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Abstract

Social interactions shape individual behaviour and public policy increasingly uses

networks to improve effectiveness. It is therefore important to understand if the the-

oretical predictions on the relation between networks and individual choice are em-

pirically valid. This paper tests a key result in the theory of games on networks: an

individual’s action is proportional to their (Bonacich) centrality. Our experiment shows

that individual efforts increase in centrality but at a rate of increase that is lower than

the theoretical prediction. Moreover, efforts are higher than predicted in some cases

and lower than predicted in other cases. These departures from equilibrium have large

effects on individual earnings. We propose a model of network based imitation decision

rule to explain these deviations.
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1 Introduction

A literature spanning different disciplines argues that our behaviour is affected by that of

our peers1 The behaviour of our peers is in turn affected by their peers, and so forth. An

enquiry into individual behaviour pushes us toward an enquiry into the influence of the

social network on individual behaviour.

The economic theory of networks shows that an individual’s action is shaped by both

the structure of the network and the nature of spillovers across individuals’ actions that are

summarized in a single network measure – Bonacich centrality (Ballester, Calvó-Armengol,

and Zenou [2006], Bramoullé, Kranton, and D’Amours [2014],Bonacich [1987]; for an early

contribution in this spirit see Leontief [1941]). This theoretical insight is increasingly used

to design policy interventions in education, crime, finance, development, macroeconomics,

international trade, and industrial organization (see e.g., Banerjee, Chandrasekhar, Duflo,

and Jackson [2013], Galeotti, Golub, and Goyal [2020], Jackson, Rogers, and Zenou [2017]).

If the theoretical prediction is not empirically valid then interventions may be less effective

or may even have counterproductive effects. Laboratory experiments with human subjects

offer the ideal environment to test this prediction as we can control the main parameters

– the payoffs and the networks. Our paper offers the first experimental evidence on the

relation between network centrality and individual choice covering a range of networks and

different classes of economic situations within a common design.

In a wide range of circumstances – a prominent example is public goods – an increase

in others’ efforts lowers an individual’s incentive to exert effort: this is the case of strategic

substitutes. In others – examples include coordination problems, pupil/scientists exerting

efforts – an increase in others’ efforts raises an individual’s returns from their action: this

is the case of strategic complements (Bulow, Geanakoplos, and Klemperer [1985]). Figure 1

illustrates the rich implications of the theory for two well known networks (core-periphery

networks and Erdos-Renyi networks) and for games of strategic substitutes and strategic

complements. The networks have 25 nodes. We chose the core-periphery network because it

is a widely-studied and empirically important network that has only two distinct centrality

values. The Erdos-Renyi network is chosen as it is a baseline example for complex networks

in which each of the nodes has a distinct centrality.

1Prominent contributions include Duesenberry [1949], Emerson [1976],Freeman [1979],Granovetter
[1985], Coleman [1994],Ohtsuki et al. [2006] and Christakis and Fowler [2009]. For an overview of the
literature see Goyal [2023].
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Our first finding summarizes the relation between subjects’ efforts and equilibrium

predictions. We find that, across the four treatments, subjects’ choices increase in their

centrality but the rate of increase is not as steep as predicted by equilibrium. More-

over, the direction of deviation from equilibrium differs across treatments. Consider the

core-periphery network: under strategic substitutes, choices are (weakly) larger than the

equilibrium; under strategic complements, choices are (weakly) smaller than the equilib-

rium. Next consider the Erdos-Renyi network: choices are larger than the equilibrium for

both games of strategic complements and games of strategic substitutes.

Our second finding addresses the question of whether departures from equilibrium are

motivated by efficiency seeking. We find that in three out of four treatments earnings are

lower and in one treatment earnings are greater than predicted by theory. The lower welfare

attained in three treatments suggests that efficiency seeking motives cannot account for

the departures from equilibrium.

Our third finding pertains to the role of complexity: we find that subjects’ actions in the

Erdos-Renyi network are less responsive to centrality than in the core-periphery network.

We then examine the decision rules that can explain these departures from theoretical

predictions.

We start by noting that the myopic best response dynamics converge to equilibrium;

so, in our experiment, subjects are not choosing the myopic best response. We next show

that efficiency seeking preferences and level-k reasoning (Charness and Rabin [2002] and

Stahl and Wilson [1995]) cannot account for our two experimental findings. This leads us

to explore other behavioural rules.

Imitation-based rules are appealing in our experimental setting because one, strategic

reasoning and computing best responses is complicated and two, we provide information

about individuals’ choices and payoffs to everyone and this information can be used by

subjects to make inferences about good courses of action because nodes in similar network

positions have similar incentives. We propose a new model that combines DeGroot style

models of learning with imitation based models to incorporate network heterogeneity (De-

Groot [1974], Golub and Jackson [2010], Conlisk [1980], Vega-Redondo [1997] and Schlag

[1998b]). Our fourth finding is that this network based imitation model can replicate the

observed behaviour of subjects across the 4 treatments.

Our paper is a contribution to the experimental studies of games on networks (Cassar

[2007], Hoelzemann and Li [2021], (Choi et al. [2017],Gale and Kariv [2009], (Charness

et al. [2014], Gallo and Yan [2021], Rosenkranz and Weitzel [2012]), (Antinyan et al.
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[2020]), (Boosey and Brown [2022]). Two aspects of our experimental design make it

novel. Firstly, we consider continuous actions, whereas most existing literature focuses

on binary actions (e.g., Charness, Feri, Meléndez-Jiménez, and Sutter [2014], Rosenkranz

and Weitzel [2012]). Secondly, we allow for both strategic complements and substitutes

(through a change in a single parameter); existing papers cover only one class of games

(see e.g Gallo and Yan [2021], Antinyan et al. [2020]). Our findings on the lower than

equilibrium response to centrality and the different level effects on actions across different

types of games and networks is novel.

An influential body of experimental research shows that individuals tend to imitate

the choices of more successful others when they have the necessary information (e.g.,

Apesteguia, Huck, and Oechssler [2007], Apesteguia, Huck, Oechssler, and Weidenholzer

[2010], Friedman, Huck, Oprea, and Weidenholzer [2015], Huck, Normann, and Oechssler

[1999]). The seminal models of imitation in Conlisk [1980], Vega-Redondo [1997], Schlag

[1998a], and Schlag [1999] consider imitation rules when individuals are similar and can

observe all choices and payoff outcomes. We extend this model to a network setting where

individuals’ imitation behaviour depends on both payoffs and network positions. Our find-

ing that a network-based imitation explains the departures from equilibrium predictions is

novel.

The rest of the paper is organized as follows. In Section 2, we describe the model of

continuous action games on networks and formulate our hypotheses, section 3 describes the

experimental design, and section 4 formulates the principal hypotheses to be tested. Section

5 presents the main experimental findings. Section 6 presents the analysis of individual

behavior rules. Supplementary materials are presented in the Appendix.

2 Theory

We consider continuous action games on networks that admit a linear best response (Ballester,

Calvó-Armengol, and Zenou [2006], Bramoullé, Kranton, and D’Amours [2014]; for an

overview of research in this field, see Goyal [2023]). The set of players is denoted by

N = 1, .., n, with n ≥ 2. Individuals make simultaneous choices, where each individual i

selects an action si ∈ R+. The individuals are located in a network g, which has a corre-

sponding adjacency matrix given by G. In the matrix G, the entry gij ∈ R+ reflects the

strength of the relationship that individual i has with individual j. Let Ni(g) = {j|gij > 0}
denote the nodes with whom node i has a link, i.e., the neighbors of i. We assume that
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for every i ∈ N , gii = 0, meaning that there are no self-loops in the network g. The vector

of actions chosen by players is denoted by s ∈ Rn
+. The payoffs to an individual i given a

vector of actions s and a network, G, are given by

Ui(s,G) = si

bi + β
∑

j∈Ni(g)

gijsj

− 1

2
s2i . (1)

The coefficient bi ∈ R corresponds to the portion of i’s marginal return that is indepen-

dent of others’ actions and is referred to as i’s standalone marginal return. The contribution

of others’ actions to i’s marginal return is given by the term β
∑

j∈N−i(g) sj . The parameter

β captures strategic spillovers. If β > 0, then actions are strategic complements; and if

β < 0, then actions are strategic substitutes.

The following result summarizes the theoretical prediction on the relation between

networks, strategic interaction, and individual actions.

Theorem 1. Suppose the spectral radius of βG is less than 1, i.e., the absolute value of

the largest eigenvalue of βG is smaller than one, then the unique Nash equilibrium of the

game is given by

s∗ = [I− βG]−1b. (2)

An individual’s equilibrium action is proportional to their Bonacich centrality.

For easy reference, we present a definition of Bonacich centrality here.

Definition 1. (Bonacich [1987]) The Bonacich centralities of a network G correspond-

ing to parameter β is [I− βG]−11

where I is the n × n identity matrix and 1 is the n-dimensional one vector. Bonacich

centrality depends both on the network structure and the spillover parameter β. In terms

of network topology, the Bonacich centrality of node i counts the total number of walks

in the network starting from i, discounted exponentially by the parameter β determining

the content of strategic interaction. Local payoff interdependence in the payoff function is

restricted to neighbors but in equilibrium spreads indirectly through the network and the

spread is summarized by Bonacich centrality.

The aim of our paper is to experimentally test this prediction.
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3 Experimental Design

To test the theoretical prediction, we consider two widely studied networks – core-periphery

and Erdos-Renyi – and we consider both games of strategic substitutes and games of

strategic complements. In all the networks there are 25 nodes.

The core-periphery structure is a stylized but empirically prominent network in finance,

business, and social contexts (Farboodi [2023], Everett and Borgatti [1999]). A core-

periphery network features individuals in the core who are considerably more “central”

compared to the periphery nodes. The equilibrium prediction in the core-periphery network

brings out the role of complements vs substitutes: core individuals choose the highest effort

under strategic complements and the lowest effort under strategic substitutes. As a result,

they achieve a higher payoff than the periphery in the strategic complements game and

they obtain a lower payoff than the periphery nodes in the case of strategic substitutes.

Figures 1 (a) and (b) presents core-periphery networks with 5 core nodes and 20 periph-

ery nodes. Links take on binary values 1 and 0. In the case of complements, the spillover

parameter β = 0.1, and for substitutes the parameter β = −0.1. For simplicity, we assume

that the standalone parameter b takes on value 10 across all nodes and all treatments.

Figure 2 presents equilibrium payoffs: they show that location in a network can have large

effects on payoffs: in Figure 2 (a) for strategic substitutes we see that the payoffs of the

highest centrality nodes are more than 4 times the payoffs of the least central nodes. And

in Figure 2 (b) for strategic complements we see that the payoffs of the highest centrality

nodes are more than eight times the payoffs of the least central nodes.

The Erdos-Renyi graph is the natural baseline for complex networks (Newman [2018]).

Figures 1 (c) and (d) and 2 (c) and (d) show that the 25 nodes in the Erdos-Renyi network

are each unique in terms of their centrality and that the range of efforts and payoffs is

comparable to that in the core-periphery network.2

Due to the computational complexity of the decision problem and the uncertainty about

what others will do, it is unlikely players will choose equilibrium actions right away: to

facilitate learning our experiment involves repeated plays of the one-shot game. In each

treatment, a group takes part in a session that consists of 40 periods. The group with

2In the core-periphery and the Erdos-Renyi network, centrality and degree are perfectly correlated.
To examine whether individuals take indirect network interactions beyond degrees into consideration, we
considered a class of networks in which the relation between centrality and degree is non-monotonic; our
principal findings remain unchanged and suggest that players respond to centrality. These networks are
discussed in section D of the Appendix.
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Figure 1: Games on Networks: Theoretical Prediction

(a) CP substitutes (b) CP complements

(c) ER substitutes (d) ER complements

25 individuals is located in the same network, but participants’ positions in the network

are reassigned after each period randomly to mitigate potential repeated game effects.

Reassignment of location in the network means that there is no persistent asymmetry

across the subjects which could cause large payoff inequity across them. This mitigates
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Figure 2: Games on Networks: Equilibrium Payoffs

(a) CP substitutes (b) CP complements

(c) ER substitutes (d) ER complements

the role potential influence of social preferences such as inequality aversion in shaping

behaviour. In every period, subjects choose an action lying in the interval [0, 40] using a
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sliding scale.3

At the end of each period, participants are informed about choices and payoffs of

all 25 nodes in that period. Given the great complexity of the networks we view this

detailed information as a baseline case as it should help ensure learning and convergence

to equilibrium. Section A presents the screen interface and feedback protocol we used in

our experiment.

Subjects payments are based on the sum of payoffs of the 40 periods plus some initial

endowment of points: 700 points for core-periphery network and Erdos-Renyi network un-

der strategic complements, and 150 points for the core-periphery network and Erdos-Renyi

network under strategic substitutes. The conversion rates are 800 points = £1 for tree net-

work strategic complements, 2000 points for tree network strategic substitutes, 700pts=£1
for core-periphery network and Erdos-Renyi network under strategic complements, and

150pts=£1 for for the core-periphery network and Erdos-Renyi network under strategic

substitutes. The endowments and conversion rates were chosen based on equilibrium pre-

dictions to allow subjects to recover from some bad periods with low payoffs, which can be

negative (with different range across treatments, and this motivated the different endow-

ment levels). The experiments were conduced at CeDeX (University of Nottingham). On

average the subjects earned £15.
For each of the four treatments, there were 8 sessions: as there were 40 periods and 25

subjects per group there were 8, 000 observations on individual choices in all.

4 Hypotheses

Theorem 1 provides a sharp prediction on behaviour. However, the strategic interactions

in large networks are complex and it is unclear if individuals will act in conformity with

equilibrium, either via introspection or through learning via repeated observation of choices.

To develop a first idea of the dynamics of choice and learning, we simulate outcomes

when individuals choose a myopic best response action at any period t given the choices

of others at period t − 1. We simulate this process. In our simulation, the choices are

made repeatedly over 40 periods, as in the experiment. In period 1, we assume individ-

uals make decisions uniformly at random, and in each subsequent period (2 − 40), they

choose the best response action to the previous period’s action profile of others. If the

3We provide subjects with a “calculator” to help them compute what they would get depending on the
sum of their neighbours’ actions, and their own action. See section A for details.
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best response action falls outside the range of [0, 40], the action is truncated to 0 or 40

accordingly. Figure 16 in the appendix plots the dynamics of the best response dynam-

ics against the Nash equilibrium: we see that convergence is very fast and similar in all

treatments. For a general discussion on the convergence of best response dynamics in such

games see Bramoullé, Kranton, and D’Amours [2014]. Putting together Theorem 1 and

our best response simulations we arrive at the following hypothesis:

Hypothesis 1: Subject choices are consistent with Nash equilibrium, i.e., their action is

equal to their Bonacich centrality multiplied by the standalone value b.

(A). Core-periphery network. In the substitutes game, core subjects choose 4.4 and periph-

ery subjects choose 9.6. In the complements game, core subjects choose 25 and periphery

subjects choose 12.5.

(B). Erdos-Renyi network: Every subject chooses a different action. In the substitutes

game, actions range from 5 to 9.4. In the complements game, actions range from 11.5 to

23.2.

In the complements (substitutes) game an increase in individual actions raises (lowers)

the neighbours’ payoffs. In other words, spillovers are positive (negative) in games of

complements (substitutes). It follows from standard considerations that equilibrium efforts

will be too low (high) in games of strategic complements (substitutes) relative to the socially

optimal actions.4 Building on the large literature on social preferences with efficiency

seeking, a possible alternative conjecture is that subjects may be expected to choose higher

(lower) than predicted actions in the case of complements (substitutes) (Charness and

Rabin [2002], Gallo and Yan [2021]).

Hypothesis 2: In games of substitutes and negative spillovers subjects’ actions are lower

than equilibrium predictions. In games of complements and positive spillovers subjects’

actions are higher than equilibrium predictions.

When we compare core-periphery with Erdos-Renyi networks, a possible conjecture is

that the greater richness of actions makes learning and computation of payoffs more difficult

and that this has the capacity to weaken the relation between centrality and effort. Based

on considerations of network complexity (Rubinstein [1998], Chatterjee and Sabourian

[2020]), we propose:

Hypothesis 3: Subject choices are more sensitive to centrality in the core-periphery

network as compared to the Erdos-Renyi network.

4The social optimal efforts are given by s∗ = [I − 2βG]−1b.
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5 Equilibrium predictions vs subject behaviour

We start by very briefly summarizing the dynamics of choices in each treatment of the

experiment. Figure 3 shows the evolution of choices for the core and the periphery in the

core-periphery network.

Figure 3: Time series of choices in the core-periphery network

Notes: The black dashed line represents the equilibrium prediction of each position. The dark red
curve shows the time series of average choice over all nodes in the same position and across all
groups. The light red curve shows the time series of average choice over all nodes in the same
position, for each session.

Figure 4 presents the time series of choices for different positions in the ER network.

The 25 network positions are grouped into five categories based on the increasing order

of their Bonacich centrality. For instance, the leftmost figure on the top displays the

five nodes with the five lowest Bonacich centrality under strategic substitutes in the ER
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network. These figures suggest that the actions settle down as we get to the end of the

experiment. We will focus on the actions in the last ten rounds in our analysis (also see

section B.2 in the Appendix for further analysis of the convergence of actions.

Figure 4: Time series of choices in the Erdos-Renyi network

Notes: The black dashed line represents the average equilibrium prediction of the five nodes for
each category. The dark red curve depicts the time series of the average choice for all nodes in the
same category across all sessions. The light red curve shows the time series of the average choice
for all nodes in the same category, for each session separately.

Figure 5 presents the relation between equilibrium prediction and subjects’ choices (in

the last ten rounds). The x-axis plots the Bonacich centrality of a subject and the y-axis

plots the choice of subjects (averaged per node across all sessions in the last ten peri-

ods). We recall that equilibrium effort is equal to centrality multiplied by the standalone

advantage b = 10: we represent this on the 45-degree black dashed line.

Our first observation on Figure 5 is that (on average) subjects’ choices increase with

centrality but that they do not increase as sharply as predicted by equilibrium.5 In other

words, the slope between choices and centrality is flatter than 1 in all treatments. This is

5This pattern is robust to different ways of organizing the data including panel regressions and regressions
with averaged data per node or group. See Tables 1, 3, 4 in section B in the Appendix.
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Figure 5: Theoretical Predictions and Subjects’ Behaviour

(a) Subjects’ actions

(b) Payoffs

Notes: (a) Centrality∗ = Centrality ·b, which is equal to Nash equilibrium. Each red dot represents
the average action chosen by subjects in the last 10 periods of a given network position, averaged
across the eight sessions. The x-axis represents the Bonacich centrality * b and the y-axis represents
the action level. The 45-degree black dashed line represents the values where the action level equals
the equilibrium prediction. The blue line is a linear OLS fit of the subject actions on theoretical
prediction, reported in Table 1. A red dot represents the percentage deviation of mean subject
payoff (from mean equilibrium payoff) in the last ten periods for a given session. The red dashed
line represents the average outcome across the eight sessions.
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shown by the blue line which represents linear fit of subject choice on equilibrium prediction.

This finding are confirmed by the regression analysis presented in Table 1. In these

regressions, each observation represents the average outcome for a specific node over the

last 10 periods and across all sessions. There are 25 observations (corresponding to the

25 network nodes) for each treatment. The coefficient of centrality is positive but strictly

lower than 1 for all treatments.

Table 1: Node-level OLS Regression of Choice on Equilibrium

CP sub CP com ER sub ER com

centrality* 0.883*** 0.667*** 0.679*** 0.650***
(0.015) (0.012) (0.045) (0.030)

constant 1.106*** 4.595*** 2.658*** 8.593***
(0.129) (0.190) (0.335) (0.527)

N 25 25 25 25

R2 0.994 0.993 0.907 0.954
Notes: *** represents p < 0.001. centrality∗ = centrality · b

We next examine the level of choices: whether they are systematically higher or lower

than the equilibrium prediction. Figure 5(a) summarizes the experimental data. Consider

the core-periphery network: under strategic substitutes, choices of core agents are higher

and choices of periphery agents are equal to equilibrium predictions; under strategic com-

plements, core agents choices are lower and periphery agents actions are (roughly) equal to

equilibrium predictions. In the Erdos-Renyi network, choices of all agents are larger than

the equilibrium under both strategic complements and strategic substitutes. We summarize

these observations as follows:

Finding 1: In all treatments, agents’ choices increase with centrality but the effect of

centrality on subjects’ choices is smaller than predicted by the equilibrium.

A. Core-periphery: under strategic substitutes core (periphery) subjects’ actions are

larger than (equal to) equilibrium predictions; under strategic complements core (pe-

riphery) subjects’ actions are lower (equal to) equilibrium predictions.

B. Erdos-Renyi network: subjects’ actions are larger than the equilibrium prediction

under both strategic complements and substitutes.

13



Figure 6: Payoff vs. centrality

Figure 5(b) shows that the subjects behaviour has large effects on their payoffs: (av-

erage) payoffs are lower than the predicted payoffs in the core-periphery substitutes, core-

periphery complements, and Erdos-Renyi substitutes treatments (two-sidedWilcoxon signed-

rank (WSR) test, p < 0.01). The (average) payoff is larger than predicted payoff in the

Erdos-Renyi network with strategic complements (two-sided WSR test, p < 0.05).

These observations are supplemented with data on how payoffs vary with centrality.

Figure 6 summarizes how our treatments affect subjects with different centrality. Consider

the core-periphery network: in both strategic substitutes and complements, the core nodes

earn significantly less than equilibrium, while the peripheral nodes earn close to equilibrium.

Next consider the Erdos-Renyi network: in strategic substitutes all nodes earn slightly

below equilibrium payoffs. In strategic complements, the low centrality nodes earn close to

equilibrium payoffs, while the high centrality nodes earn higher than equilibrium payoffs

consistently.
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We summarize these observations on payoffs in our second finding:

Finding 2: Subjects’ actions are inconsistent with efficiency seeking behaviour in three

out of four treatments.

We turn next to the impact of complexity on individual action: Figure 5(a) tells us

that in the game with strategic substitutes the slope coefficient is higher for core-periphery

network than for Erdos-Renyi network; for the game with strategic complements the slope

coefficient is similar across the two networks. To summarize:

Finding 3: Subjects’ actions in the Erdos-Renyi network are less responsive to centrality

than in the core-periphery network.

A potential explanation for the flatter relationships between actions and centrality

could be that subjects care about equity: lower dispersion of effort will help in attaining

lower inequality in payoffs. However, in our experiment the Gini-coefficient of earnings is

higher than the theoretically predicted levels in three out of the four treatments as shown

in Figure 7.6

Figure 7: Gini coefficient

This leads us to a more systematic exploration of decision rules that can help us in

understanding the deviations from theoretical predictions.

6In our experiment players are being reassigned locations across rounds. As individuals have an equal
chance of occupying different positions, if they took a long run view of the game then there would be
no a priori reason to shade efforts to obtain more egalitarian outcomes: from an ex-ante perspective in
equilibrium all subjects expect the same payoffs aggregated across rounds.
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6 Explaining the departures from equilibrium predictions

We study behavioral rules that can account for these departures from equilibrium. Our

point of departure is the best response dynamics: recall from the simulations reported in

Figure 16 that the best response dynamics converge to the unique Nash equilibrium. We

supplement these best response dynamics with noise, where the time-varying noise level is

calculated according to the root mean squared error (RMSE) of subject choices compared

to best responses in each round.7 These simulations indicate that noisy best responses yield

average action levels that are (almost) identical to those in Nash equilibrium in the last ten

rounds, thus they do not provide a good match with the experimental data: in particular,

they do not lead to the flat relationships between choices and centrality observed in the

experimental data. To understand our results we therefore need to go beyond best response

dynamics. We next examine models of imitation.8

When computing payoffs from different actions is challenging it may be attractive to

imitate the choices of more successful others (Conlisk [1980], Vega-Redondo [1997], Alós-

Ferrer and Weidenholzer [2008], Schlag [1998b]).

6.1 A simple model of imitation

We consider a simple imitating-the-best model in discrete time. Denote the individual

choice at node i ∈ {1, 2, ..., 25} and in period t ∈ {1, 2, ..., 40} by sit and denote the

payoff node i obtained in period t by πit. In each period t ≥ 2, we assume an individual

in network position i imitates the best choice from t − 1 among those in i’s reference

group, Ri. The reference group is based on how “similar” two nodes are, which can be

determined by, e.g., degree and centrality. More precisely, the imitation choice is defined

as si,t ∈ {sj,t−1|j ∈ argmaxh∈Ri
πh,t−1}.

The above imitation rule along with an initial condition sss0 defines a dynamical system

ssst+1 = f(ssst). An action profile sss∗ is a steady state if it satisfies sss∗ = f(sss∗). It is clear that

7It is worth noting that the average patterns of the simulated noisy best response outcomes are robust
to the noise level.

8We also considered two other models. One, the level-k reasoning model (Nagel [1995], Stahl and Wilson
[1995], Crawford et al. [2013]). Section C.4 of the Appendix shows that this model is unable to generate
key patterns of the data. Two, we consider a behavioral rule where an agent plays a best response to their
neighbours but believes that every neighbour plays the same action, and this action corresponds to the
average action in the population; this is inspired by the notion of cursed equilibrium, Eyster and Rabin
[2005]. Section C.4 of the Appendix shows that this model cannot account for the patterns in our data.
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all individuals choosing the same action (sssi = s) is a steady state, i.e., there is a continuum

of steady states.

To make progress, we therefore consider local stability of steady states. Suppose that

an individual deviates from the steady state to a small amount, whether the action profile

of the network will return back to the steady state or not. If it will, we refer that steady

state to a locally stable steady state.

We define the reference group of node i with centrality ci by Ri = {j|cj = ci}), then a

necessary condition for local stability is: for any i and j with the same centrality,

∂πi(sss
∗)

∂s∗i
=

∂πj(sss
∗)

∂s∗i

=⇒ b− s∗ij + β
∑

h∈Ni(g)

s∗h = gijs
∗
ij

(3)

where s∗ij = s∗i = s∗j is the choice of i and j in the steady state.

To see why (3) holds. Suppose, without loss of generality, that ∂πi(sss
∗)

∂s∗i
>

∂πj(sss
∗)

∂s∗i
, then

a small positive deviation of si will make the payoff of i larger than that of j, which will

cause j to imitate the new choice of i, and so sss∗ will not be stable.

We next apply this notion of local stability to the core-periphery network. Suppose

the choices of the core and the periphery in a locally stable steady state are s∗c and s∗p,

respectively. Then for a periphery node, it must satisfy:

∂πp(sss
∗)

∂s∗p
= 0 (4)

To see why equation (4) must hold, consider a small deviation of s∗p; it is easy to see that

will lower the payoff of the periphery node that deviated. Then, other periphery nodes

will not imitate it and periphery node that deviated will return to the steady state next

period. Next suppose equation (4) does not hold: for example, suppose it is positive, then

a positive deviation will increase the payoff of the periphery node that deviated, which will

make other periphery nodes imitate it and drive the system away from the original steady

state.

Next, let us consider core nodes c and c′: the (necessary) condition for the core is
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∂πc(sss
∗)

∂s∗c
=

∂πc′(sss
∗)

∂s∗c

=⇒ b− s∗c + 4βs∗c + 4βs∗p = βs∗c

(5)

To see why it must hold, note that if the L.H.S of (5) is greater (smaller) than the R.H.S,

then a positive (negative) deviant core node will earn a higher payoff than the other core

nodes. This means that other core nodes will imitate it in the next period, implying that

the steady state is not locally stable.

For concreteness, we now calculate the locally stable steady state in the core-periphery

network with our parameter values: b = 10 and β = 0.1 (strategic complements) and

b = 10 and β = −0.1 (strategic substitutes). For these parameters, there is a unique value

that satisfies the local stability conditions:

• complements: s∗c = 21.2 and s∗p = 12.1

• substitutes: s∗c = 4.76 and s∗p = 9.52.

We observe that the unique locally stable steady state has certain relationship with

the Nash equilibrium. Consider the strategic complements case, recall that the Nash

equilibrium is 25 and 12.5 for the core and periphery, respectively; we note that in the

complements case, the locally stable steady states lie below the Nash equilibrium. For

strategic substitutes, the Nash equilibrium are 4.41 and 9.56 for the core and periphery,

respectively. Under locally stable steady state, the core has a higher choice than the Nash

choice while the periphery node has a (slightly) lower choice than the Nash. Finally, we

observe that the imitation dynamics yield action levels that respond less than proportion

to centrality. That is, the relationship between action and centrality is flatter than that

predicted by the theory.

The above characterises the locally stable action profiles that are robust to small indi-

vidual deviations. It is not clear whether they are globally stable. We conduct simulations

of the dynamical process starting from random initial choices to examine whether imitation

dynamics converge, and if so, what they converge to.

In the simulation, agents choose uniformly at random in the first period. Starting

from the second period, their choices are made according to the aforementioned imitation

rules. In order to prevent getting stuck in an unstable steady state, we introduce a small
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amount of noise into individuals’ choices. Formally, we suppose a noise following a normal

distribution with standard deviation σ = 0.1. We conduct 100 simulations with each

lasting 1,000 periods. Table 2 summarises the average and the range of outcomes in the

simulation.

It can be observed that average choices are essentially equal to the locally stable choice

and all the choices consistently cluster around that locally stable steady state within a

narrow range. For example, in the case of strategic complements, the locally stable choice

of the core is 21.1, and the mean choice of simulation in the last 100 periods (out of 1000-

period simulation) is also 21.2, with all choices in those periods falling between 19.4 and

23.3.

Table 2: Imitating the best outcome for the core-periphery network

locally stable choice mean simulation range

substitutes core 4.76 4.77 (4.00, 5.68)

substitutes periphery 9.52 9.53 (9.00, 10.02)

complements core 21.2 21.2 (19.4, 23.3)

complements periphery 12.1 12.1 (11.6, 12.7)

So far we have considered the case where for each node i, there are other nodes that

have the same centrality. More generally, a node may have a unique centrality value (as

in the Erdos-Renyi network). In that case, we consider the situation in which a node may

want to imitate those whose centrality is close to themselves. We now propose a a general

model of reference groups.

6.2 Network based imitation model

We extend the existing model by proposing a smooth model of imitation that assigns

lower probability to imitating agents with lower payoffs and those who are further away in

network characteristics. Building on the imitation literature and models of learning (see

DeGroot [1974]), we suppose that the choice of node i at time t, denoted as sIMi,t , is a

convex combination of the choices of all nodes at the previous time period (t− 1):

sIMi,t =
∑
j∈N

wi,j,tsj,t−1 + ϵi,t (6)

where sj,t−1 represents the choice of node j at time t−1 and ϵi,t captures noise in choice
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(it has a normal distribution with mean 0). The number wi,j,t ∈ [0, 1] reflects the weight

that node i assigns to node j in period t, and is calculated as follows:

wi,j,t =
ezi,j,t∑

k∈N ezi,k,t

zi,j,t = −δ|x̃i − x̃j |+ λπ̃j,t−1

(7)

where x̃i represents the (normalized) network property of node i (e.g., degree, centrality)

and π̃ represents the (normalised) payoff.9 The weight node i puts on node j at time t

therefore depends on the payoff of node j at time t− 1 and the network difference between

them. The parameter λ captures the sensitivity of the weight to payoff, while δ captures

the sensitivity to network difference.

When the imitation dynamics is more responsive to network property as compared to

payoff (low value of λ as compared to δ) the model predicts a close relation between actions

and centrality. On the other hand, if imitation dynamics is more responsive to payoffs as

compared to network property (a high value of λ compared to δ), the model predicts a

coefficient close to 0, since all individuals put most of the weight on the individual with

the highest payoffs.

To understand under what circumstances the network-based imitation model can gen-

erate the positive but flat relationship between actions and centrality, we conduct the

simulation of the model with a wide range of parameters. In Figure 8, the network prop-

erty being considered for nodes is the degree, and the noise level is 1. We conduct 100

simulations for each pair of (δ, λ). When the imitation dynamics is responsive to network

property compared to payoff (e.g., the lower triangular part of the heat map figure), the

simulated model predicts the positive but flat relationship as in the data across networks

and strategic contents. On the other hand, when the imitation dynamics is dominated

by payoff differences (i.e., with high value of λ and relatively low value of δ), the model

predicts the completely flat relationship with the estimated slope coefficient close to 0.

These patterns are robust to different levels of noises and to different network properties

(as shown in section B.4 in the Appendix).

9The normalisation procedure is as follows: x̃i = xi−min(x)
max(x)−min(x)

and π̃j,t−1 =
πj,t−1−min(π)

max(π)−min(π)
, where x

represents the network characteristic vector and π represents the equilibrium payoff vector. max(·) and
min(·) represents the maximal and minimal element of a vector, respectively.
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Figure 8: Slope for different parameter values (σ = 1)

6.3 Estimating the network-based imitation model

We estimate the parameters by minimizing the mean absolute error (MAE) between the

predicted and actual choices (over all treatments, groups, individuals, and all but the first
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period) and use residuals to estimate the levels of choice noises. We estimate common

parameters for all the treatments.

σtreat,t =
∑
i,grp

(ai,t,treat,grp − sIMi,t,treat,grp) (8)

The results are as follows: δ = 13.673 and λ = 5.108 for degree-based imitation (and

they are δ = 19.608 and λ = 4.653 for centrality-based imitation). Consistent with intu-

ition, the parameters for the imitation model are all positive, suggesting that people will

put more weights on those with similar network features and high payoffs.

The predicted imitation choice for each individual in each period (t ≥ 2), sIMi,t , can then

be calculated based on the formula (7) and the estimated parameters (λ, δ) and using an

estimated variance of choice noise for each period of the data.

We next present simulations of the model and compare them with the experimental

data. In the simulation, we assume that there is noise in individual choices, so that the

actual choice of node i in period t ≥ 2 is si,t = ŝi,t + ϵi,t, where ŝi,t is the expected choice

predicted by the model given the simulated outcomes in period t − 1, and we assume

that the noise ϵi,t follows a normal distribution. The noises might be interpreted as errors

or trembling in decision making, or intentional exploration of choices in the game. We

estimated the variance of this noise for each period from the data. We assume that the

initial actions are drawn uniformly at random in the action space [0, 40].10

Figure 9 presents the scatter plot of actual choices (in red dots) versus simulated choices

(in blue dots) over centrality. We can see that imitation dynamics generate a flatter re-

lationship between choice and centrality than Nash equilibrium, consistent with the ex-

perimental data. Table 6 in the Appendix B reports estimated slope coefficients from the

regressions of actual choices as well as simulated choices. We also note that the direction

of deviation from Nash equilibrium is consistent with the experiment: the core nodes’

choices in the core-periphery treatment are below the equilibrium and choices are above

Nash equilibrium in the Erdos-Renyi network.

There are two effects at work in the network-based imitation model. The first pertains

to a ‘negative cross effect on payoffs’. The idea is as follows: when an agent lowers action

from an equilibrium action her payoff falls but it may be that the cross effects on payoffs of

other agents are even more negative. In this case the individual who is deviating becomes an

10The outcomes in the last ten rounds of the imitation simulation are robust to the distribution of the
initial actions.
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object of imitation and this creates a cascade of deviations leading away from equilibrium

(Vega-Redondo [1997]).

The second effect is an “imperfect network differentiation effect”: individuals tend to

imitate the choices of others with different (albeit similar) network positions. Intuitively,

imperfect differentiation among various network positions can lead to different nodes mak-

ing similar choices, thereby creating a flat relationship between choices and theoretical

predictions. Therefore the second effect can explain the flat relationship. But it does not

have much to say on the specific direction of deviation from equilibrium.

As centrality measure of core and periphery nodes is very distinct in the core-periphery

model, the first effect dominates in that network. On the other hand, in the Erdos-Renyi

network the 25 nodes each have distinct centrality and every node sees other nodes who have

slightly higher or lower centrality than itself. In this setting, the second effect dominates.

Higher centrality nodes have higher equilibrium payoffs (under both strategic complements

and strategic substitutes). As subjects cannot perfectly distinguish different positions, they

tend to imitate those with higher centrality – this pushes activity to levels in excess of

the equilibrium prediction. Moreover, the smaller differences in network property (degree,

centrality) in ER network also limit the network sensitivity for a fixed value of delta (which

therefore creates more sensitivity to higher payoff).
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Figure 9: Fitting the experimental data to the imitation model

(a) Subjects’ actions vs. imitation model

(b) Payoffs

Notes: (a) Centrality∗ = Centrality · b, which is equal to Nash equilibrium. A red dot represents the average action
made by subjects in the last 10 periods of a given network position across eight sessions. A blue dot represents the
average simulation action made in the last 10 periods of a given network position across 1,000 simulations. The
45-degree black dashed line represents the values where the action level equals the equilibrium prediction. (b) A
red dot represents the percentage deviation of mean subject payoff (from mean equilibrium payoff) in the last ten
periods for a given session. The red dashed line represents the average outcome across the eight sessions. The blue
dashed line represents the average outcome across 1,000 simulations.
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7 Robustness

The baseline experiment suggests that one, individual efforts are less sensitive to centrality

than predicted by the theory and two, actions are higher than equilibrium in some situations

and lower than equilibrium in others. These deviations from equilibrium have large effects

on individual earnings. We propose a new model of network based imitation based choice

to explain these deviations. To assess the generality of our findings, we also considered

alternative networks and experimental designs. This section reports on these investigations.

7.1 Extrapolations

We explore whether the key findings of the experiment can be generalized beyond the set-

tings of the experimental design, through the help of the network-based imitation model.

We do so by increasing group size up to 100 and considering an alternative network struc-

ture, scale-free networks, that is widely studied in the literature (see e.g., Barabási and

Albert [1999]). In this extrapolation exercise, we adjust the model parameter across varia-

tions so that the range of Nash equilibrium actions is comparable and the estimated noise

levels are re-used. Specifically, the standalone parameter is fixed to be 10 across the group

sizes, while the spillover effect is ±0.1, ±0.07, and ±0.05 for group size n = 25, 49, and

100, respectively.

Figures 25 - 27 (in the appendix) present the results of simulations across different

group sizes in the three different network structures. This extrapolation exercise suggests

that the positive but flat relationship between actions and centrality continues to hold

beyond the settings of the experiment.

7.2 Additional experimental treatments

We conduct three other experiments to examine key aspects of our experimental design.

Following Gallo and Yan [2021], the first additional experiment studied the question of

whether subjects follow centrality or degree. The baseline experiment involves subjects

being relocated in the network after every round. This eliminates repeated game effects

and ensures symmetry across subjects but at the cost of greater complexity in the learning

problem. Recall that this complexity was also a key consideration underlying the use of

the imitation based decision rule. In our second additional experiment we fix the location

of subjects in the network. As imitation rests on knowledge of others’ actions and payoffs,
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there is a possibility that restricting information on others’ payoffs could discourage imi-

tation and this may facilitate actions closer to Nash equilibrium. In our third additional

experiment, subjects were shown the actions of everyone but only their own payoffs. This

allows us to study how subjects learn when they cannot compare their payoffs with the

payoffs of other subjects.

7.2.1 Is behaviour driven by degrees or centrality?

In both core-periphery and Erdos-Renyi networks degrees are monotonic with respect to

centrality. In a recent paper, Gallo and Yan [2021] suggest that subjects’ behaviour may

be driven by direct network measure such as degree (rather than their centrality). To

investigate whether individuals base their actions on centrality or degree, we considered

an additional experimental treatment featuring a network with non-monotonic relationship

between degree and centrality. This experiment is reported in section D in the Appendix.

We created networks and proposed parameters such that an increase in centrality does

not translate into a increase in degree. In particular, under strategic substitutes, the

equilibrium action decreases in centrality but does not monotonically decrease with degrees.

Likewise, under strategic complements, equilibrium action increases with centrality but

not with degree. We investigate whether subjects’ choices correlate with their Bonacich

centrality or if they correlate with their degree in the network. Figure 31 (in the appendix)

shows a positive relationship between subject choice and centrality as the theory suggests.

We also note that the slope is less than 1 in all cases, as in the baseline experiments. We

also find that actions increase in centrality and that they are non-monotonic in degree. We

interpret this as evidence in support of the theory – centrality drives behaviour.

7.2.2 Does fixed location in networks lead to better match with theory?

We considered a design with core-periphery and Erdos-Renyi networks and with strategic

substitutes and complements as in the baseline experiment. The only difference was that

agents were assigned a location that remained unchanged throughout the 40 rounds of the

experiment. The principal hypothesis is that fixing location simplifies learning and that

this will facilitate faster convergence of actions and also a closer match with the Nash

equilibrium prediction. The results of this experiment are reported in section D in the

appendix.
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Our first finding is that actions settled down significantly faster in all the four treat-

ments as compared to the baseline treatments. This is in line with our hypothesis. Our

second finding pertains to the match with the equilibrium prediction: we found that the

match with theory was better for some treatments and less good for other treatments, as

compared to the baseline experiments. This goes against our hypothesis. Our third finding

is that the coefficient of centrality on actions is positive but strictly lower than 1 in three

out of four treatments, except the Erdos-Renyi network under strategic complements. Our

fourth finding is that the level of actions mirror those seen in the treatments in the baseline

experiment.11

The outcomes in the fixed network position treatment are broadly consistent with the

baseline outcomes, with the only exception being that the relationship between choice

and centrality in the Erdos-Renyi network with strategic complements is not flatter than

theoretical prediction.

7.2.3 Does limited information on others’ payoffs lead to better match with

theory?

We also considered the scenario where each player can observe the choices of all individuals

but do not observe others’ payoffs. They did however observe their own payoffs. This is

in contrast to the baseline setting, where individuals have access to information about

both the choices and payoffs of all players. When players do not observe others’ payoffs

they cannot imitate actions of others based on relative earnings. On the one hand this

makes learning from others more difficult but on the other hand it may push subjects

toward learning from their own experience and choosing best responses more often. Our

hypothesis is that learning will be slow and so behaviour will remain noisy but on average

subjects will be closer to the equilibrium as compared to the outcomes in the baseline

experiment. The results of this experiment are reported in section D in the appendix.

Our first finding is that the rate of convergence is slower than the baseline treatment

and this is in line with our hypothesis. However, the match of average behaviour with

equilibrium prediction is better for some treatments and worse for others, as compared to

the baseline experiment. In other words, the lack of information on others’ payoffs does

not lead to a higher likelihood of subjects choosing best responses (on average). Our third

11It is worth noting another difference with the baseline treatment: some subjects are persistent outliers
in the sense that they choose very high or very low effort. We comment on this and discuss the outcomes
from median individual choices in the appendix.
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finding is that as in the baseline setting, the slope coefficient of centrality on actions is

positive but strictly lower than 1 across all treatments. Finally, the impact of network

complexity on individual actions mirrors that observed in the baseline case: the slope

coefficients in the Erdos-Renyi network are weakly smaller than those in the core-periphery

network.
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ONLINE APPENDIX

A Network game interface

A.1 Instructions

(a) Screen 1

(b) Screen 2

Figure 10: Main instructions (ER substitutes treatment)
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(a) Screen 3

(b) Screen 4

Figure 11: Main instructions (ER substitutes treatment, Cont.)
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(a) Screen 5

(b) Screen 6

(c) Screen 7

Figure 12: Main instructions (ER substitutes treatment, Cont.)
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A.2 Tutorial

(a) Screen 1

(b) Screen 2

Figure 13: Comprehension questions (ER substitutes treatment)
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A.3 Game interface

(a) Decision screen (b) Feedback screen

Figure 14: Illustrations of game interface (ER substitutes treatment)

Figure 15: Help screen during the experiment
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B Additional Experimental Findings, Behavioural Models

and Results

B.1 Simulation of best response dynamics

We simulate outcomes when individuals choose a myopic best response action at any period

t given the choices of others at period t− 1. We simulate this process. In our simulation,

the choices are made repeatedly over 40 periods, as in the experiment. In period 1, we

assume individuals make decisions uniformly at random, and in each subsequent period

(2 − 40), they choose the best response action to the previous period’s action profile of

others. If the best response action falls outside the range of [0, 40], the action is truncated

to 0 or 40 accordingly.

Figure 16 in the appendix plots the dynamics of the best response dynamics against the

Nash equilibrium based on 1000 simulations in each treatment (the value for each period

represents the mean across the 1,000 simulations).

Figure 16: Best response dynamics

RMSE measures the distance between choices generated by best response dynamics sBi,t

and the theoretical prediction s∗i : RMSEt =

√∑N
i=1(s

B
i,t−s∗i )

2

N . RMSE is widely used as a

measure of the discrepancy between predicted values and target values.
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We observe that the RMSE decreases sharply across periods and converge to the equi-

librium within 10 periods in all the four treatments.

B.2 Convergence of actions

This section elaborates on our discussion on the dynamics of subjects’ choices and provides

a more formal analysis of convergence of actions. To show the magnitude of changes of

choices across periods, we plot the time series of the mean absolute percentage change

(MAPC) of choice for each treatment. Specifically, for each period t ≥ 2, the MAPCt is

calculated as follows:

MAPCgrp,t =

∑25
i=1 |si,grp,t − si,grp,t−1|∑25

i=1 |si,grp,t−1|

MAPCt =

∑8
grp=1MAPCgrp,t

8

(9)

The light red curves in Figure 17 plot the time series of MPAC for each group (i.e.,

MAPCgrp,t), while the bold red curves plot the MAPC averaged across groups (i.e.,

MAPCt).

Figure 17: Change of choices
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In particular, the mean absolute percentage change (MAPC) are below 20% in the last

ten periods for all the treatments. Our analysis will focus on these last ten periods.

B.3 Regression Tables

Table 3 shows session-level OLS regressions of choice on centrality for each treatment. In

these regressions, each observation represents the average outcome for a specific session

over the last 10 periods and across the nodes with a given centrality: each session yields

2 observations in the CP network (core and periphery players), and 25 observations in the

ER network (every node has different centrality in this network).

Table 3: Session-level OLS Regression of Choice on Equilibrium

CP sub CP com ER sub ER com

centrality* 0.883*** 0.667*** 0.679*** 0.650***
(0.028) (0.054) (0.032) (0.039)

constant 1.106*** 4.595*** 2.658*** 8.593***
(0.211) (1.068) (0.238) (0.697)

N 16 16 200 200

R2 0.986 0.916 0.690 0.581
Notes: *** represents p < 0.001. centrality∗ = centrality · b

Table 4 shows Random effect regressions of individual action level on centrality (or

equilibrium choice) in the last 10 periods. Those results are consistent with Table 3.

Table 4: Panel Regression of Choice on Equilibrium

CP sub CP com ER sub ER com

centrality* 0.878*** 0.675*** 0.688*** 0.631***
(0.011) (0.011) (0.023) (0.018)

constant 1.151*** 4.479*** 2.590*** 8.927***
(0.107) (0.215) (0.179) (0.352)

N 2000 2000 2000 2000

R2 0.7524 0.6429 0.3154 0.3809
Notes: *** represents p < 0.001. centrality∗ = centrality · b

In order to explain individual behavior in the experiment, we run random effects regres-

sions predicting individual choices based on choices specified by specific individual decision
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Table 5: Random Effects Regression of Individual Choice on Predictors

CP sub CP com ER sub ER com

Best Response 0.061 -0.006 0.254*** 0.236***
(0.035) (0.031) (0.027) (0.017)

Imitation 0.603*** 0.924*** 0.476*** 0.548***
(0.039) (0.042) (0.035) (0.023)

Constant 3.093*** 1.609*** 2.204*** 4.405***
(0.126) (0.249) (0.196) (0.294)

N 7800 7800 7800 7800

R2 0.237 0.457 0.111 0.303

Notes: *: p < 0.05, **: p < 0.01, ***: p < 0.001

models. Specifically, we consider a best response decision model according to which an

individual is expected to choose an action at period t that is a best response to actions by

neighbours at period t − 1. We also consider the imitation model described in the paper.

The results reported in Table 5 show that the imitation choice has a significantly positive

coefficient in all the treatments and have a stronger explanatory power for the imitation

model than the best response model.

Finally, Table 6 compares the relationship between choice and centrality as measured in

the experiment through the corresponding coefficient in the group-level regressions reported

above (see Table 3), and the same coefficient measured through simulations based on the

imitation model. Only the last 10 periods are considered for both the experimental data

and the imitation simulation. This analysis shows a close match between simulations and

subjects’ behavior in the experiment.

Table 6: Slope of choice on equilibrium

Treatment experimental data imitation

CP substitutes 0.883*** 0.932***
(0.015) (0.001)

CP complements 0.667*** 0.746***
(0.012) (0.001)

ER substitutes 0.679*** 0.664***
(0.045) (0.026)

ER complements 0.650*** 0.501***
(0.030) (0.020)

Notes: *** represents p < 0.001
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Figure 18: Slope for different parameter values (estimated noise)

B.4 Simulations of the imitation model

In Figure 18 where we take the level of (time-variant) noise estimated from the data, we

report an estimated slope coefficient from the regression of simulated actions on centrality

in each different pair of (δ, λ). In Figure 19– 20, the noise level is 3, and 5, respectively.

100 simulations are conducted for each pair of (δ, λ).

We next compare the dynamics of choice under best response and imitation rule: We

simulate the dynamics of choices when individuals choose different behavioral models, and

compare it with subjects’ choices from the experiment. We consider the myopic best

response model and the imitation model presented earlier at any period t given the choices

of others at period t−1. For each model, we run 1,000 simulations (in period 1, we assume

individuals make decisions uniformly at random). Figures 21 and 22 plot the corresponding

time series for each treatments when averaging across individuals from the same category

(based on similar centrality, as specified above).
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Figure 19: Slope for different parameter values (σ = 3)

Figure 20: Slope for different parameter values (σ = 5)

42



Figure 21: Time series of subject and simulated choices in the CP network

B.5 Alternative Behavioural Models

B.5.1 Level-k Model

We examine whether the level-k reasoning model (Nagel [1995], Stahl and Wilson [1995],

Crawford et al. [2013]) can explain the key patterns of our data. Consider the level-k

model:

level 0: sl0 = m · 1, where m ∈ [0, 40] where m is the level-0 action.

level 1: ŝl1 = b+ βGsl0 and sl1i = max(min(ŝl1i , 40), 0) for each i ∈ N

We can define the level-k action vector iteratively as follows:

level k: ŝlk = b+ βGslk−1 and slki = max(min(ŝlki , 40), 0) for each i ∈ N

In the level-k model, each individual makes a best response to the level-(k-1) action

profile, represented by b+ βGslk−1 . Because the behaviours of level-k individuals depend

critically on the behaviour of level-0 agent m, we vary the value of m in the simulation

exercise below.

In relation to our treatments, if an individual’s action falls below 0, we truncate it to

0; if it exceeds 40, we cap it at 40. This adjustment is because the permissible range of

choices in our experiment lies between 0 and 40.

Figure 23 shows the slope coefficient of choice on Nash for each value of k and the
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Figure 22: Time series of subject and simulated choices in the ER network

level-0 action. For a given cell, we assume that all agents have the same level k and the

same level-0 action. We can see that the level-k model does not consistently generate flat

relationship between choice and Nash equilibrium. In particular, when k is large, the slope

is close to one as the level-k action profile becomes close to Nash equilibrium.

B.5.2 Best response to the average

Instead of making best response to the choices of the exact neighbours, individuals make

best response by anticipating that each of the neighbour plays the average choice level of

the population, represented by s = b+ βGs. We can write the equilibrium vector for this

model as s∗BA = b+ βGΠs∗BA, where Π is a 25× 25 matrix with each element equal to 1
25

for calculating the average action.

The blue dots in Figure 24 show the choice of best response to the average for each

centrality value. It shows that this model does not consistently generate flat relationship

between choice and centrality.
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Figure 23: Slope for different k and level-0 action

Figure 24: Choice vs. centrality for best response to the average
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C Extrapolation

In this section we present our results when we extrapolate behaviour beyond the experi-

mental setting by increasing group size up to 100 and considering an alternative network

structure, scale-free networks, that is widely studied in the literature (e.g., Barabási and Al-

bert [1999]). The standalone benefits are kept fixed at 10 (as in the baseline experiments).

When we increase the group size of core-periphery networks, we hold constant the ratio

of the number of core neighbours to that of periphery neighbours from the core player’s

perspective. For Erdos-Renyi networks, the linking probability is p = 1
6 , 0.12, and 0.08 for

n = 25, 49, and 100, respectively. These linking probabilities are chosen to ensure that

there is no isolated node in the Erdos-Renyi network. Regarding scale-free networks, we

generate them according to the Barabási–Albert preferential attachment model (Barabási

and Albert [1999]) where the number of edges to attach from a new node to existing nodes

is set to one for all group sizes.

Figures 25 - 27 present the results of simulations across different group sizes in the three

different network structures including scale-free network. The network for a given setting

is fixed across the 1,000 simulations.
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Figure 25: Imitation choices (core-periphery network)

Figure 26: Imitation choices (Erdos-Renyi network)
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Figure 27: Imitation choices (scale free network)

D Additional treatments

D.1 Tree network

In both the core-periphery and Erdos-Renyi networks, the equilibrium effort (centrality)

level shows a roughly monotonic relationship with degrees. That is, in the complements

(substitutes) scenario, high-degree nodes tend to have a larger (lower) equilibrium effort

level than low-degree nodes. To explore whether individuals consider indirect network-

based influences when making their decisions, we create two tree networks depicted in

Figures 28 and 29, which show that there exists non-monotonicity between centralities

and degrees. Under strategic substitutes, the equilibrium action does not monotonically

decrease with degrees: degree-3 agents have lower equilibrium effort levels than degree-4

agents. Conversely, under strategic complements, centrality and hence equilibrium action

does not monotonically increase with degrees: degree-3 agents have higher equilibrium

effort levels than degree-4 agents. We investigate whether agents will follow centralities or

degrees.

We set the parameters for strategic substitutes to b = 40 and β = −0.3, and for strategic
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Figure 28: Equilibrium in a tree network under strategic substitutes

(a) Network (b) Equilibrium prediction vs. degree

complements to b = 0.15 and β = 0.39. These parameters are designed to generate non-

monotonicity in the relationship between centrality and degree.

Figure 30 presents the time series of choices for different positions in the tree network.

The 25 network positions are grouped into five categories based on the increasing order

of their equilibrium choice. For instance, the leftmost figure on the top displays the five

nodes with the five lowest equilibrium prediction under strategic substitutes in the tree

network. The black dashed line represents the average equilibrium prediction of the five

nodes for each category. The dark red curve depicts the time series of the average choice

for all nodes in the same category across all sessions. The light red curve shows the time

series of the average choice for all nodes in the same category, for each session separately.

Figure 31 shows the average subject choice in the last ten periods for each network

position in the tree treatments. Similarly to the CP and ER networks, we observe a

positive relationship between subject choice and centrality, but the relationship is flatter

than the theory suggests. Figure 32 show the fittings of the network-based imitation model

in the tree treatments.

Degree vs. centrality We investigate whether subjects’ choices in the experiment

are predicted by their Bonacich centrality, as predicted by theory, or if they correlate with

their degree in the network.
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Figure 29: Equilibrium in a tree network under strategic complements

(a) Network (b) Equilibrium prediction vs. degree

Figure 30: Time series of choices in the tree network
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Figure 31: Choices vs. equilibrium prediction

(a) Tree substitutes (b) Tree complements

Figure 32: Imitation Simulation

(a) Tree substitutes (b) Tree complements
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The CP and ER networks do not allow us to address this question as there exists a

roughly monotonic relationship between centrality and degree.

Recall that in the tree network under strategic substitutes, there exists non-monotonicity

between centrality and degree as the three degree-3 nodes have lower centralities than the

unique degree-4 node. We conduct one-sided Wilcoxon Signed-Rank test against the three

pairs for the last 10 periods. The result shows that two of the degree-3 positions indeed

have significantly lower choices than the degree-4 position (p < 0.05, N = 8).

Similarly, in the tree network under strategic complements, the three degree-3 nodes

have a higher centrality than the two degree-4 nodes. We conduct one-sided Wilcoxon

Signed-Rank test against the six pairs. The results show that all the three degree-3 nodes

have significantly higher choices than the two degree-4 nodes (p < 0.05, N = 8).

This analysis reveals a non monotonic relationship between subjects’ choices and degree,

suggesting that subjects’ choices are more sensitive to centrality than degree, as predicted

by theory.

D.2 Fixed network position

In the baseline setting, individuals’ positions are randomly shuffled after each round, and

the outcomes show that choices deviate from Nash equilibrium significantly. To examine

whether reducing the complexity of learning may result in better convergence and alignment

to Nash equilibrium, we consider a setting in which each player’s network position remains

fixed throughout the 40 rounds of the game.

Table 7 shows that subject choices are more stable in the last ten periods of the game

compared to the baseline experiment in all the four treatments. Despite the improved

convergence of actions, notable deviations from Nash equilibrium still appear in this fixed

position treatment, as shown in Table 8 and Figure 33(a). The match with Nash equilibrium

is only slightly better than in the baseline experiments for three out of four treatments and

is worse in the core-periphery network with strategic substitutes.12

Figure 33(a) presents the relation between predictions and subjects’ actions in the fixed

position setting. It shows that the slope coefficient of centrality on actions is positive but

strictly lower than 1 in three treatments, except in the Erdos-Renyi network with strategic

12The especially large deviation in the core-periphery network with strategic substitutes can be attributed
to outlier individual behaviors — some individuals located in the core position constantly chose extreme
action levels (e.g., very high levels).
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Figure 33: Theoretical Predictions and Subjects’ Behaviour in the Fixed Position Setting

(a) Subjects’ actions

(b) Payoffs

Notes: (a) Centrality∗ = Centrality · b, which is equal to Nash equilibrium. Each red dot represents the average
action chosen by subjects in the last 10 periods of a given network position, averaged across the four sessions. The
x-axis represents the Bonacich centrality * b and the y-axis represents the action level. The 45-degree black dashed
line represents the values where the action level equals the equilibrium prediction. The blue line is a linear OLS fit
of the subject actions on theoretical prediction. (b) A red dot represents the percentage deviation of mean subject
payoff (from mean equilibrium payoff) in the last ten periods for a given session. The red dashed line represents
the average outcome across the four sessions. Due to space limitations, the figure does not show the result of one
(outlier) group in the core-periphery network with strategic substitutes, which has a payoff deviation of −94.7%.
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complements whose coefficient is larger than 1.13 Regarding whether actions are higher or

lower than the prediction, it is observed that the patterns mirror those seen in the baseline

setting. Finally, regarding the impact of complexity on individual action, in contrast to

the baseline setting, the slope coefficients in the Erdos-Renyi network are (weakly) larger

than those in the core-periphery network.

The average payoff individuals obtained as shown in Figure 33(b) is similar to the base-

line setting: (average) payoffs are lower than the predicted payoffs in the core-periphery

substitutes, core-periphery complements, and Erdos-Renyi substitutes treatments. The

(average) payoff is larger than the predicted payoff in the Erdos-Renyi network with strate-

gic complements.

To conclude, the outcomes in the fixed network position treatment are broadly con-

sistent with the baseline outcomes, with the main exception being that the relationship

between choice and centrality in the Erdos-Renyi network with strategic complements is

not flatter than theoretical prediction. To explain this, note that in the imitation model

we developed, one important drive of flat relationship is the learning from people in sim-

ilar but different network positions. When positions are fixed, individuals may put more

emphasis on learning from one’s own past experiences instead of mimicking others. Intu-

itively, this may result in larger difference in action among individuals and thus sharper

relationship between choice and centrality as compared to the baseline experiment. We

leave the development of the learning model based on own experience to future work.

D.3 Limited information on payoffs

We also consider the scenario where each player can observe the choices of all individuals

but do not observe others’ payoffs. They do observe their own payoffs. This is in contrast

to the baseline setting, where individuals have access to information about both the choices

and payoffs of all players. When players do not observe others’ payoffs this limits their

ability to imitate actions of others based on relative performance. We aim to examine

whether this change will induce players to conduct best response and thus lead to better

match with Nash equilibrium.

Table 7 shows that the rate of convergence is slower than the baseline treatment and

this is in line with our hypothesis. However, as shown in Table 8, the match of average

13The slope coefficient using median data for each network position is approximately one in the core-
periphery substitutes and Erdos-Renyi complements cases, and is smaller than one in the other two treat-
ments. These differences are caused by outlier behaviors of some individuals on specific network locations.
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Figure 34: Theoretical Predictions and Subjects’ Behaviour

(a) Subjects’ actions

(b) Payoffs

Notes: (a) Centrality∗ = Centrality · b, which is equal to Nash equilibrium. Each red dot represents the average
action chosen by subjects in the last 10 periods of a given network position, averaged across the eight sessions. The
x-axis represents the Bonacich centrality * b and the y-axis represents the action level. The 45-degree black dashed
line represents the values where the action level equals the equilibrium prediction. The blue line is a linear OLS fit
of the subject actions on theoretical prediction. (b) A red dot represents the percentage deviation of mean subject
payoff (from mean equilibrium payoff) in the last ten periods for a given session. The red dashed line represents the
average outcome across the eight sessions.
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Table 7: Change of choices

baseline fixed position limited information

CP substitutes 0.11 0.06 0.18

CP complements 0.16 0.08 0.18

ER substitutes 0.19 0.09 0.24

ER complements 0.14 0.07 0.17
Notes: The table presents the mean absolute percentage change (MAPC) of choice in the last ten rounds for each

treatment. Specifically, for each group grp and each period t ≥ 2, MAPCgrp,t =
∑25

i=1 |si,grp,t−si,grp,t−1|∑25
i=1 |si,grp,t−1|

and the

reported MAPC is averaged across groups and last ten periods.

Table 8: Deviation from Nash

baseline fixed position limited information

CP substitutes 0.10 0.20 0.16

CP complements 0.13 0.11 0.13

ER substitutes 0.16 0.13 0.18

ER complements 0.19 0.18 0.13
Notes: The table presents the mean absolute percentage deviation (MAPD) of choice to Nash equilibrium in the last
ten rounds for each treatment.

behaviour with equilibrium prediction is better for some treatments and worse for others, as

compared to the baseline experiment. The relationship between predictions and subjects’

actions, as shown in Figure 34(a), is similar to that in the baseline setting in three out

of four treatments and is flatter in the Erdos-Renyi substitutes case. As in the baseline

setting, the slope coefficient of centrality on actions is positive but strictly lower than 1

across all treatments.

We next examine whether actions are higher or lower than the prediction, the pattern

in the core-periphery complements case aligns with that of the baseline treatment, while

the action levels in the other cases are (slightly) smaller than those in the baseline setting.

Recall that, in the baseline setting the action levels are consistently larger than equilibrium

in the Erdos-Renyi network; by contrast, in the limited information setting, low central-

ity nodes choose above equilibrium while high centrality nodes choose below equilibrium

actions.

The impact of network complexity on individual action mirror those observed in the

baseline case: the slope coefficients in the Erdos-Renyi network are weakly smaller than

those in the core-periphery network. Turning to average payoffs, Figure 34(b) shows that
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the results replicate those of the baseline in three out of the four treatments. The average

payoffs are lower than predicted in the core-periphery substitutes, core-periphery comple-

ments, and Erdos-Renyi substitutes treatments. However, in contrast to the baseline case,

the payoffs in the Erdos-Renyi network with strategic complements does not exceed the

predicted payoff (since choices do not consistently exceed the equilibrium choices as in the

baseline setting).

To conclude, the results in the limited payoff information setting are largely consistent

with those in the baseline setting. The large deviation in the limited information setting

indicates that individuals do not conduct best response and may still imitate others despite

the lack of payoff information. Indeed, the imitation of others without payoff information

could explain the slightly smaller average action levels observed in the limited information

setting for the Erdos-Renyi network as players can no longer imitate those highly-paid

players who typically have high equilibrium action level.
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