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We investigate how to improve efficiency using regression adjustments with co-

variates in covariate-adaptive randomizations (CARs) with imperfect subject com-

pliance. Our regression-adjusted estimators, which are based on the doubly robust

moment for local average treatment effects, are consistent and asymptotically nor-

mal even with heterogeneous probabilities of assignment and misspecified regression

adjustments. We propose an optimal but potentially misspecified linear adjustment

and its further improvement via a nonlinear adjustment, both of which lead to more

efficient estimators than the one without adjustments. We also provide conditions

for nonparametric and regularized adjustments to achieve the semiparametric effi-

ciency bound under CARs.
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1 Introduction

Randomized experiments have become increasingly popular in economic research. One

commonly used randomization method employed by economists to ensure balance be-

tween treatment and control is covariate-adaptive randomization (CAR) (Bruhn and

McKenzie, 2009), in which subjects are randomly assigned to treatment and control

within strata formed by a few key pretreatment variables. However, subject compliance

with the random assignment is usually imperfect. We survey all publications using ran-

domized experiments in eight leading economics journals from 2015 to 2022 and identify

ten papers that used CARs with imperfect compliance.1

When subjects do not comply with the assignment in CARs, researchers usually esti-

mate the local average treatment effects (LATEs) for the compliers using the two-stage

least squares (TSLS) method with treatment assignment as an instrumental variable and

covariates and strata fixed effects as exogenous controls. Actually, all ten papers men-

tioned above estimate the LATE in this way. We simply denote this estimator as TSLS.

Recently, Ansel, Hong, and Li (2018) proposed an S estimator (denoted as S) which

aggregates IV estimators for strata. Bugni and Gao (2023) proposed a fully saturated

estimator with strata dummies, which we call the unadjusted estimator (NA) as it does

not use covariates. The standard theory for the consistency of TSLS requires both cor-

rect specification of the conditional mean model and homogeneous treatment effect. In

contrast, both S and NA estimators are consistent under CARs without requiring correct

specifications, homogeneous treatment effect, or identical treatment assignment proba-

bility across strata. Ansel et al. (2018) further show the S estimator is the most efficient

among all the estimators discussed in their paper (Proposition 7).

Nevertheless, the existing literature lacks a systematic study or comparison of various

LATE estimators under CARs. TSLS and S estimators assume different linear conditional

mean models, which can be viewed as different types of linear regression adjustments.2

Then, under what conditions the TSLS estimator, like the S estimator, is consistent

1See Section 2.3 for more details.
2We use the plural of the word “adjustment” for an estimator because each estimator consists of

working models for both the first and second stages.
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even when the regression adjustments are misspecified? How is the efficiency comparison

among TSLS, S, and NA estimators when all of them are consistent? Is the S estimator

the most efficient among all linearly adjusted LATE estimators? Can other potentially

misspecified nonlinear regression adjustments lead to more efficient LATE estimators?

Last, what is the semiparametric efficiency bound (SEB) for LATE estimation under

(CARs) and how can we achieve it?

In this paper, we provide answers to all these questions. Specifically, we follow the

framework that was recently established by Bugni, Canay, and Shaikh (2018) to study

causal inference under CARs, which allows for heterogeneous assignment probabilities and

treatment effects. We first show that (1) TSLS with both strata dummies and covariates

as exogenous controls is inconsistent if both the assignment probabilities and treatment

effects are heterogeneous across strata; (2) even when TSLS is consistent (especially when

the treatment assignment probabilities are homogeneous), its usual heteroskedasticity

robust standard error is conservative due to the cross-sectional dependence introduced

by CARs;3 (3) the correct asymptotic variance of the TSLS estimator may be greater than

that of the NA estimator, which defeats the purpose of using covariates in the regression.

We then propose a general regression-adjusted estimator using the doubly robust mo-

ment for LATE with a consistent estimator of the assignment probability and potentially

misspecified regression adjustments based on covariates. The doubly robust moment for

LATE has been derived by Frölich (2007) and used for estimating LATE by S loczyński,

Uysal, and Wooldridge (2022) and Heiler (2022). But we are the first to apply it under

CARs and investigate the potential efficiency improvements when the regression adjust-

ments are misspecified. We show that our inference method (1) achieves the exact asymp-

totic size under the null despite the cross-sectional dependence introduced by CARs, (2)

is robust to adjustment misspecification, and (3) achieves the SEB when the adjustments

are correctly specified. The SEB for LATE under CARs is also new to the literature and

complements those bounds derived by Frölich (2007) and Armstrong (2022).4

3This point is consistent with the result in Ansel et al. (2018) for their estimator β̂2. However,

β̂2 is computed by TSLS with only strata dummies under the assumption of homogeneous assignment
probabilities, but no covariates as exogenous control variables.

4Frölich (2007) derived the SEB for LATE assuming i.i.d. data. However, CARs can introduce cross-
sectional dependence, and thus, violate the independence assumption. Armstrong (2022) derived the
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Finally, we compare the efficiency of our LATE estimators with three specific para-

metric forms of regression adjustments: (1) the optimal linear adjustments (denoted as

L), which yield the most efficient estimator among all linearly adjusted estimators, (2)

the nonlinear logistic adjustments (denoted as NL), and (3) a combination of linear and

nonlinear adjustments (denoted as F) which is more efficient than both linear and nonlin-

ear adjustments and new to the literature. We also extend Ansel et al. (2018) by showing

that their S estimator is asymptotically equivalent to our estimator L, and is thus optimal

among the linearly adjusted estimators but less efficient than estimator F. We further give

conditions under which estimators with nonparametric (denoted as NP) and regularized

(denoted as R) regression adjustments achieve the SEB. Figure 1 in Section 2.5 visualizes

the partial order of efficiency of these estimators.

Our paper is related to several lines of research. Hu and Hu (2012); Ma, Hu, and

Zhang (2015); Ma, Qin, Li, and Hu (2020); Olivares (2021); Shao and Yu (2013); Zhang

and Zheng (2020); Ye (2018); Ye and Shao (2020) studied inference of either the av-

erage treatment effect (ATE) or quantile treatment effect (QTE) under CARs without

considering covariates. Bugni et al. (2018); Bugni, Canay, and Shaikh (2019); Bloniarz,

Liu, Zhang, Sekhon, and Yu (2016); Fogarty (2018); Lin (2013); Lu (2016); Lei and Ding

(2021); Li and Ding (2020); Liu, Tu, and Ma (2020); Liu and Yang (2020); Negi and

Wooldridge (2020); Shao, Yu, and Zhong (2010); Ye, Yi, and Shao (2021); Zhao and

Ding (2021) studied the estimation and inference of ATEs using a variety of regression

methods under various randomization schemes. Jiang, Phillips, Tao, and Zhang (2022)

examined regression-adjusted estimation and inference of QTEs under CARs. Based on

pilot experiments, Tabord-Meehan (2021) and Bai (2020) devised optimal randomization

designs that may produce an ATE estimator with the lowest variance. Bugni and Gao

(2023) further examined the optimal design with imperfect compliance. All the above

works, except Bugni and Gao (2023), assumed perfect compliance, while we contribute

to the literature by studying the LATE estimators in the context of CARs and regres-

sion adjustments, which allows imperfect compliance. Ren and Liu (2021) studied the

SEB for average treatment effect under CARs but without covariates. The SEB for LATE under CARs
but without covariates is a byproduct of our result by letting our covariates be an empty set.
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regression-adjusted LATE estimator in completely randomized experiments for a binary

outcome using the finite population asymptotics. We differ from their work by consider-

ing the regression-adjusted estimator in covariate-adaptive randomizations for a general

outcome using the superpopulation asymptotics. Finally, our paper also connects to a

vast literature on estimation and inference in randomized experiments, including Hahn,

Hirano, and Karlan (2011); Athey and Imbens (2017); Abadie, Chingos, and West (2018);

Tabord-Meehan (2021); Bai, Shaikh, and Romano (2021); Bai (2020); Jiang, Liu, Phillips,

and Zhang (2021), among many others.

Acronyms. In this paper, we refer to the optimally linearly adjusted, nonlinearly

(logistic) adjusted, and nonparametrically adjusted estimators, introduced in Sections

5.1.1, 5.1.2, and S.C of the Online Supplement, as L, NL, and NP, respectively. We also

use NA and S to denote the fully saturated and S estimators proposed by Bugni and Gao

(2023) and Ansel et al. (2018), respectively. F denotes the estimator with adjustments

that improve upon both optimal linear and nonlinear adjustments (Section 5.1.3), while

R denotes the estimator with regularized adjustments (Section 5.2). We will provide

more details about these estimators below.

2 Setting and Empirical Practice

2.1 Setup

Let Yi denote the observed outcome of interest for individual i; write Yi = Yi(1)Di +

Yi(0)(1−Di), where Yi(1) and Yi(0) are the potential treated and untreated outcomes for

the individual i, respectively, and Di is a binary random variable indicating whether the

individual i received treatment (Di = 1) or not (Di = 0) in the actual study. One could

link Di to the treatment assignment Ai in the following way: Di = Di(1)Ai+Di(0)(1−Ai),

where Di(a) is the individual i’s treatment outcome upon receiving treatment status

Ai = a for a = 0, 1; Di(a) is a binary random variable. Define Yi(Di(a)) := Yi(1)Di(a) +

Yi(0)(1−Di(a)), so we can write Yi = Yi(Di(1))Ai+Yi(Di(0))(1−Ai). Individual i belongs

to stratum Si and possesses covariate vector Xi, where Xi does not include the constant
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term. The support of the vectors {Xi}ni=1 is denoted Supp(X), while the support of

{Si}ni=1 is S, which is a finite set. Without loss of generality, suppose that S = {1, . . . , S}

for some integer S > 0.

A researcher can observe the data {Yi, Di, Ai, Si, Xi}ni=1. Define [n] := {1, 2, ...n},

p(s) := P(Si = s), n(s) :=
∑

i∈[n] 1{Si = s}, n1(s) :=
∑

i∈[n] Ai1{Si = s}, n0(s) :=

n(s) − n1(s), S(n) := (S1, . . . , Sn), X(n) := (X1, . . . , Xn), and A(n) := (A1, . . . , An). We

make the following assumptions on the data generating process (DGP) and the treatment

assignment rule.

Assumption 1. (i) {Yi(1), Yi(0), Di(0), Di(1), Si, Xi}ni=1 is i.i.d. over i. For each i,

we allow Xi and Si to be dependent.

(ii) {Yi(1), Yi(0), Di(0), Di(1), Xi}ni=1 ⊥⊥ A(n)|S(n).

(iii) Suppose that p(s) is fixed with respect to n and positive for every s ∈ S.

(iv) Let π(s) denote the propensity score for stratum s (i.e., the targeted assignment

probability for stratum s). Then, c < mins∈S π(s) ≤ maxs∈S π(s) < 1 − c for some

constant c ∈ (0, 0.5) and Bn(s)
n(s)

= op(1) for s ∈ S, where Bn(s) :=
∑n

i=1(Ai −

π(s))1{Si = s}.

(v) Suppose P(D(1) = 0, D(0) = 1) = 0.

(vi) maxa=0,1,s∈S E(|Yi(a)|q|Si = s) ≤ C <∞ for some q ≥ 4.

Several remarks are in order. First, Assumption 1(i) allows for the treatment assign-

ment A(n), and thus, the observed outcome {Yi}i∈[n] to be cross-sectionally dependent,

which is usually the case for CARs. Second, Assumption 1(ii) implies that the treat-

ment assignment A(n) are generated only based on strata indicators. Third, Assumption

1(iii) imposes that the strata sizes are roughly balanced. Fourth, Bugni et al. (2018)

show that Assumption 1(iv) holds under several covariate-adaptive treatment assign-

ment rules such as simple random sampling (SRS), biased-coin design (BCD), adaptive

biased-coin design (WEI) and stratified block randomization (SBR).5 Note that we only

5For completeness, we briefly repeat their descriptions in Appendix S.A.
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require Bn(s)/n(s) = op(1), which is weaker than the assumption imposed by Bugni et al.

(2018) but the same as that imposed by Bugni et al. (2019) and Zhang and Zheng (2020).

Fifth, Assumption 1(v) implies there are no defiers. Last, Assumption 1(vi) is a standard

moment condition.

Throughout the paper, we are interested in estimating the local average treatment

effect (LATE), which is denoted by τ and defined as

τ := E
[
Y (1)− Y (0)|D(1) > D(0)

]
;

that is, we are interested in the ATE for the compliers (Angrist and Imbens, 1994).

2.2 Examples of Economics Datasets

To motivate our work, we give three examples of prominent economic datasets that use

CARs and have imperfect compliance.

Example 1. Atkin, Khandelwal, and Osman (2017) conducted a randomized experiment

with a CAR design to identify the impact of exporting on firm performance.6 They had

two samples of firms. In sample 1, they randomized firms into treatment or control with

a target probability of 0.5 in each of the strata named: Goublan, Tups and Duble. In

sample 2, they randomly select firms for the treatment group with a target probability

of 0.25 in stratum Duble. They then combined the two samples together, which makes

the probabilities of assignment into treatment (π(s)) in their joint sample heterogeneous

across strata. Firms with assignment into treatment were offered an initial opportunity to

sell to high-income markets, but only 62.16% of them managed to secure large and lasting

orders.

Example 2. Dupas, Karlan, Robinson, and Ubfal (2018) studied how rural households

benefit from free bank accounts.7 They randomly assigned 2,160 households to treatment

or control groups within each of the 41 strata. The targeted assignment probability for

treatment for each stratum is 0.5. Households with assignment into treatment received

6The dataset can be found at https://doi.org/10.7910/DVN/QOGMVI.
7The dataset is available at https://www.openicpsr.org/openicpsr/project/116346/version/V1/view.

7



vouchers to open accounts, but only 41.87% of them did so and deposited money within

2 years.

Example 3. Jha and Shayo (2019) examined how financial market participation affects

political views and voting behavior.8 They used CAR to randomly assign 1345 participants

to treatment or control groups within each stratum, with a target probability for treatment

of 0.75. Participants with assignment into treatment were offered to trade assets, but only

81.08% of them made a trade.

2.3 Survey of Empirical Practice

[Insert Table 1 here.]

We survey the common practice for analyzing experiments in the empirical economics

literature. Our survey is limited to articles that contain the term “experiment” in their

title or abstract and are published between January 2015 and December 2022 in eight

journals: the American Economic Journal: Applied Economics (AEJ: Applied), Amer-

ican Economic Journal: Economic Policy (AEJ: Policy), American Economic Review,

Econometrica, Journal of Political Economy, Quarterly Journal of Economics (QJE),

Review of Economics and Statistics (ReStat), and Review of Economic Studies. We then

manually select the articles that use CARs and report imperfect compliance. Table 1

tabulates the articles found in our survey. It shows that all the papers in our sample

use TSLS with covariates and strata fixed effects to estimate the LATE. This finding

motivates us to study the statistical properties of this commonly used TSLS estimator in

Section 2.4 before proposing our new estimator.

2.4 TSLS with Covariates and Strata Fixed Effects

Our survey shows that empirical researchers using CARs usually estimate LATE via

TSLS regressions with strata dummies and covariates. The first and second stages of the

8The dataset can be found at https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA16385.
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TSLS regression can be formed as

Di ∼ γAi +
∑
s∈S

as1{Si = s}+X>i θ, Yi ∼ τDi +
∑
s∈S

αs1{Si = s}+X>i δ, (2.1)

where {as}s∈S and {αs}s∈S are the strata fixed effects.

Denote the TSLS estimator of τ by τ̂TSLS. To study the asymptotic properties of

τ̂TSLS, we follow Bugni et al. (2018) and Ansel et al. (2018) and make the following

additional assumption on the treatment assignment mechanism.

Assumption 2. Suppose π(s) ∈ (0, 1) and

{{
Bn(s)√

n

}
s∈S

∣∣∣∣{Si}i∈[n]

}
 N (0,ΣB),

where Bn(s) =
∑n

i=1(Ai − π(s))1{Si = s}, ΣB = diag(p(s)γ(s) : s ∈ S), and 0 ≤ γ(s) ≤

π(s)(1− π(s)).

Three remarks are in order. First, Assumption 2 is used to analyze the TSLS estimator

only and is not needed for all the analyses in later sections in the paper. Second, it implies

Assumption 1(iv). Third, we have γ(s) = π(s)(1−π(s)) for SRS and γ(s) < π(s)(1−π(s))

for the other three randomization designs mentioned after Assumption 1. Specifically, for

BCD and SBR, we have γ(s) = 0, which means the assignment rules achieve the strong

balance.

Following empirical researchers, we also consider the usual IV heteroskedasticity-

robust standard error estimator for TSLS estimator τ̂TSLS, which is denoted as σ̂TSLS,naive/
√
n.9

We compare τ̂TSLS with Bugni and Gao’s (2023) fully saturated estimator (denoted as

τ̂NA) for τ under CAR, which does not use any covariates Xi. The asymptotic variance

of τ̂NA is then denoted as σ2
NA, which is given in Bugni and Gao (2023). In Section 3,

we further show that τ̂NA is a special case of our general estimator whose asymptotic

variance is derived in the proof of Theorem 3.1.

9The detailed definition of σ̂TSLS,naive can be found in the proof of Theorem 2.1.
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Theorem 2.1. Suppose Assumption 1 holds. Then, we have

τ̂TSLS
p−→

E
(
π(Si)(1− π(Si))

[
E(Yi(Di(1))|Si)− E(Yi(Di(0))|Si)

])
E
(
π(Si)(1− π(Si))

[
E(Di(1)|Si)− E(Di(0)|Si)

]) ,

If π(s) or E(Yi(Di(1))|Si=s)−E(Yi(Di(0))|Si=s)
E(Di(1)|Si=s)−E(Di(0)|Si=s)

is the same across s ∈ S, then τ̂TSLS
p−→ τ . If

π(s) = π for all s ∈ S and Assumptions 1 and 2 hold, then

√
n(τ̂TSLS − τ) N (0, σ2

TSLS) and σ̂2
TSLS,naive

p−→ σ2
TSLS,naive,

where the definitions of σ2
TSLS and σ2

TSLS,naive can be found in the proof, σ2
TSLS ≤ σ2

TSLS,naive,

and the inequality is strict if γ(s) < π(1− π). Last, it is possible to have σ2
TSLS > σ2

NA.

Theorem 2.1 highlights one advantage and three limitations of the commonly used

TSLS estimator under CARs. The advantage is that the TSLS estimator can consistently

estimate the LATE under certain conditions without assuming the linear regression in

(2.1) is correctly specified. Hence, the reason for incorporating covariates in the regression

is to improve estimation efficiency. The first limitation is that the TSLS estimator is

inconsistent when both the treatment effect and the probabilities of treatment assignment

vary across strata. To ensure its consistency, economists should thus keep the target

assignment probability (π(s)) equal across all strata in the experimental design stage,

which may not be the case in practice (see, for example, the first dataset in Section 2.2).

The second limitation is that the heteroskedasticity-robust standard error reported by

standard software such as STATA is conservative and inconsistent unless γ(s) = π(1−π).

However, this condition is violated when treatment is not assigned independently, such

as BCD and SBR, which are widely used in RCTs. The third limitation is that the

asymptotic variance σ2
TSLS may not be smaller than that of the unadjusted estimator,

which goes against the purpose of using covariates in the regression.

In this paper, we develop estimators that have the same advantage as TSLS but avoid

all these limitations. Specifically, our proposed LATE estimators are (1) consistent even

under misspecification of regression models, (2) consistent even when the probabilities of

treatment assignment are heterogeneous across strata, and (3) guaranteed to be weakly
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more efficient than the unadjusted estimator. We also provide consistent estimators of

the asymptotic variances for our LATE estimators.

2.5 Efficiency Comparison of LATE Estimators: Preview

Before delving into the details of our proposed estimators, we provide a preview of the

efficiency comparison among various LATE estimators mentioned in the paper. Figure 1

illustrates their relationship, with the most efficient on the right and the least efficient on

the left. A dashed circle around an estimator indicates that this estimator is not always

consistent. The least efficient estimator in Figure 1 is the strata fixed effects IV (SFE IV)

estimator, as proposed by Bugni and Gao (2023). Bugni and Gao (2023) showed that

SFE IV is consistent only when the probability of assignment into treatment is the same

across strata. Even when SFE IV is consistent, they showed that it is no more efficient

than NA. There are no arrows between NA and TSLS because TSLS can be less efficient

than NA even when it is consistent. Ansel et al.’s (2018) S estimator is asymptotically

equivalent to our estimator L (i.e., the optimal linear adjustments). Since both NA and

TSLS (whenever it is consistent) have linear adjustments (NA has linear adjustments with

zero coefficients), they are less efficient than S or L. There is no clear winner between

NL and L because even the optimal linear adjustments can be misspecified and thus

potentially less efficient than some nonlinear adjustments. Theoretically, the logistic

regression adjustments can be even less efficient than NA depending on how severe the

misspecification is. However, the F estimator is guaranteed to be more efficient than both

L and NL by construction. Last, as NP and R achieve the SEB, they are more efficient

than F. Notice that all the comparisons, except for those with the TSLS or SFE IV, are

made under the same set of assumptions (Assumptions 1 and 3 later). As for those with

TSLS or SFE IV, the comparisons are made whenever TSLS or SFE IV is consistent.

[Insert Figure 1 here.]
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3 The General Estimator and its Asymptotic Prop-

erties

In this section, we propose a general regression-adjusted LATE estimator for τ . Define

µD(a, s, x) := E
[
D(a)|S = s,X = x

]
and µY (a, s, x) := E

[
Y (D(a))|S = s,X = x

]
for

a = 0, 1 as the true specifications. In practice, these are unknown and empirical re-

searchers employ working models µD(a, s, x) and µY (a, s, x), which may differ from the

true specifications. We then proceed to estimate the working models with estimators

µ̂D(a, s, x) and µ̂Y (a, s, x). As the working models are potentially misspecified, their

estimators are potentially inconsistent for the true specifications.

To further differentiate µb(·), µb(·), and µ̂b(·) for b ∈ {D, Y }, we consider an example

that µD(a, s, x) follows a probit model, i.e., µD(a, s, x) = FN(α̃a,s + x>β̃a,s), where FN(·)

is the standard normal CDF, and α̃a,s and β̃a,s are the regression coefficients which are

allowed to depend on assignment a and stratum s. However, the researcher does not know

the correct specification and instead uses a logit model µD(a, s, x) = λ(αa,s + x>βa,s) as

the working model, where λ(·) is the logistic CDF. Then (αa,s, βa,s) are the pseudo true

values that depend on how they are estimated and can be defined as the probability

limits of the chosen estimator (α̂a,s, β̂a,s). For instance, we can estimate the regression

coefficients in the logistic model via logistic quasi MLE or nonlinear least squares. As the

logistic model is misspecified, the two estimation methods lead to two different pseudo

true values. Suppose we estimate (αa,s, βa,s) by quasi MLE and denote their estimators

as (α̂a,s, β̂a,s). The estimator of the working model is then µ̂D(a, s, x) = λ(α̂a,s + x>β̂a,s).

In CAR, the targeted assignment probability for stratum s, π(s), is usually known or

can be consistently estimated by π̂(s) := n1(s)
n(s)

. Then our proposed estimator of LATE

based on the doubly robust moments10 is

τ̂ :=

(
1

n

∑
i∈[n]

ΞH,i

)−1(
1

n

∑
i∈[n]

ΞG,i

)
, where (3.1)

10For reference of doubly robust moments, see Robins, Rotnitzky, and Zhao (1994), Robins and Rot-
nitzky (1995), Scharfstein, Rotnitzky, and Robins (1999), Robins, Rotnitzky, and van der Laan (2000),
Hirano and Imbens (2001), Frölich (2007), Wooldridge (2007), Rothe and Firpo (2019) etc; see S loczyński
and Wooldridge (2018) and Seaman and Vansteelandt (2018) for recent reviews.

12



ΞH,i :=
Ai(Di − µ̂D(1, Si, Xi))

π̂(Si)
− (1− Ai)(Di − µ̂D(0, Si, Xi))

1− π̂(Si)
+ µ̂D(1, Si, Xi)− µ̂D(0, Si, Xi),

(3.2)

ΞG,i :=
Ai(Yi − µ̂Y (1, Si, Xi))

π̂(Si)
− (1− Ai)(Yi − µ̂Y (0, Si, Xi))

1− π̂(Si)
+ µ̂Y (1, Si, Xi)− µ̂Y (0, Si, Xi).

(3.3)

Given the double robustness and the consistency of π̂(s), our estimator τ̂ is consistent

even when the working models (µ̂D(·), µ̂Y (·)) are misspecified. Our analysis also takes

into account the cross-sectional dependence of the treatment statuses caused by the ran-

domization and is therefore different from the double robustness literature that mostly

focuses on the observational data with independent treatment statuses. Furthermore, our

general adjusted estimator is numerically invariant to the stratum-specific location shift

because

n∑
i=1

(
Ai
π̂(Si)

− 1

)
1{Si = s} = 0 and

n∑
i=1

(
1− Ai

1− π̂(Si)
− 1

)
1{Si = s} = 0.

Therefore, using adjustments µ̂b(a, Si, Xi) and µ̂b(a, Si, Xi) − E(µb(a, Si, Xi)|Si) for b ∈

{D, Y } are numerically equivalent.

Assumption 3. (i) For a = 0, 1 and s ∈ S, define Ia(s) :=
{
i ∈ [n] : Ai = a, Si = s

}
,

∆Y (a, s,Xi) := µ̂Y (a, s,Xi)− µY (a, s,Xi), and

∆D(a, s,Xi) := µ̂D(a, s,Xi)− µD(a, s,Xi).

Then, for a = 0, 1, b = D, Y , we have

max
s∈S

∣∣∣∣
∑

i∈I1(s) ∆b(a, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆b(a, s,Xi)

n0(s)

∣∣∣∣ = op(n
−1/2).

(ii) For a = 0, 1 and b = D, Y , 1
n

∑n
i=1(∆b(a, Si, Xi))

2 = op(1).

(iii) Suppose maxa=0,1,s∈S E([µb(a, Si, Xi)]
2|Si = s) ≤ C < ∞ for b = D, Y and some

constant C.
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Assumption 3 requires µ̂b(·) to be a consistent estimator of µb(·) for b = D, Y . For

instance, we can consider a linear working model µY (a, s,Xi) = X>i βa,s, where the pseudo

true value βa,s is defined as the probability limit of the OLS estimator β̂a,s from regressing

Yi on Xi using observations in Ia(s). Then, the estimator µ̂Y (a, s,Xi) can be written as

X>i β̂a,s, and Assumption 3(i) reduces to

max
s∈S,a=0,1

∣∣∣∣( 1

n1(s)

∑
i∈I1(s)

Xi −
1

n0(s)

∑
i∈I0(s)

Xi

)>
(β̂a,s − βa,s)

∣∣∣∣ = op(n
−1/2), (3.4)

which holds automatically because by definition, β̂a,s
p−→ βa,s, and we will assume EX2

i <

∞. This example shows that we do not need to assume the working model µY (a, s,Xi) =

X>i βa,s is correctly specified. A similar remark applies to Assumption 3(ii) and nonlinear

working models such as the logistic regression mentioned earlier. We verify Assumption

3 for general parametric adjustments in Section 5.1 below.

To state our first main result below, we need to introduce extra notation. Let Di :=

{Yi(1), Yi(0), Di(1), Di(0), Xi}, Wi := Yi(Di(1)), Zi := Yi(Di(0)), W̃i := Wi − E[Wi|Si],

Z̃i := Zi − E[Zi|Si], X̃i := Xi − E[Xi|Si], D̃i(a) := Di(a)− E[Di(a)|Si] for a = 0, 1, and

µ̃b(a, Si, Xi) := µb(a, Si, Xi)− E
[
µY (a, Si, Xi)|Si

]
, b ∈ {D, Y }. (3.5)

Theorem 3.1. (i) Suppose Assumptions 1 and 3 hold, then

√
n(τ̂ − τ) N (0, σ2), where σ2 :=

σ2
1 + σ2

0 + σ2
2

P(D(1) > D(0))2
, (3.6)

σ2
1 := E

[
π(Si)Ξ

2
1(Di, Si)

]
, σ2

0 := E
[
(1− π(Si))Ξ

2
0(Di, Si)

]
, σ2

2 := E
[
Ξ2

2(Si)
]
,

and Ξ1(Di, Si), Ξ0(Di, Si), and Ξ2(Si) are defined as

Ξ1(Di, Si) :=

[(
1− 1

π(Si)

)
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi) +

W̃i

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi) +

D̃i(1)

π(Si)

]
, (3.7)
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Ξ0(Di, Si) :=

[(
1

1− π(Si)
− 1

)
µ̃Y (0, Si, Xi) + µ̃Y (1, Si, Xi)−

Z̃i
1− π(Si)

]

− τ

[(
1

1− π(Si)
− 1

)
µ̃D(0, Si, Xi) + µ̃D(1, Si, Xi)−

D̃i(0)

1− π(Si)

]
, (3.8)

Ξ2(Si) :=
(
E[Wi − Zi|Si]− E[Wi − Zi]

)
− τ

(
E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]

)
.

(3.9)

(ii) Next, we define σ̂2 as

σ̂2 =

1
n

∑n
i=1

[
AiΞ̂

2
1(Di, Si) + (1− Ai)Ξ̂2

0(Di, Si) + Ξ̂2
2(Si)

]
(

1
n

∑n
i=1 ΞH,i

)2 , where

Ξ̂1(Di, s) := Ξ̃1(Di, s)−
1

n1(s)

∑
j∈I1(s)

Ξ̃1(Dj, s),

Ξ̂0(Di, s) := Ξ̃0(Di, s)−
1

n0(s)

∑
j∈I0(s)

Ξ̃0(Dj, s),

Ξ̂2(s) :=

(
1

n1(s)

∑
i∈I1(s)

(Yi − τ̂Di)

)
−
(

1

n0(s)

∑
i∈I0(s)

(Yi − τ̂Di)

)
,

Ξ̃1(Di, s) :=

[(
1− 1

π̂(s)

)
µ̂Y (1, s,Xi)− µ̂Y (0, s,Xi) +

Yi
π̂(s)

]
− τ̂

[(
1− 1

π̂(s)

)
µ̂D(1, s,Xi)− µ̂D(0, s,Xi) +

Di

π̂(s)

]
, and

Ξ̃0(Di, s) :=

[(
1

1− π̂(s)
− 1

)
µ̂Y (0, s,Xi) + µ̂Y (1, s,Xi)−

Yi
1− π̂(s)

]
− τ̂

[(
1

1− π̂(s)
− 1

)
µ̂D(0, s,Xi) + µ̂D(1, s,Xi)−

Di

1− π̂(s)

]
.

Then, we have σ̂2 p−→ σ2.

(iii) If the working models are correctly specified, i.e., µb(a, s, x) = µb(a, s, x) for all

(a, b, s, x) ∈ {0, 1} × {D, Y } × SX , where SX is the joint support of (S,X), then

the asymptotic variance σ2 achieves the SEB.

Several remarks are in order. First, Theorem 3.1(i) establishes the limiting distribu-

tion of our adjusted LATE estimator, which also implies its consistency. Our estimator

inherits the advantage of the TSLS estimator because it remains consistent even when the
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adjustment µb(·) is misspecified, but avoids its limitation because our estimator remains

consistent when π(s) varies across strata. Additionally, the terms σ2
0, σ2

1, and σ2
2 in the

asymptotic variance of our regression-adjusted LATE estimator represent the sampling

variations from the control units within each stratum, the treatment units within each

stratum, and the strata itself, respectively.

Second, Theorem 3.1(ii) gives a consistent estimator of this asymptotic variance, which

depends on the working model µb(a, s, x) for (a, b) ∈ {0, 1} × {D, Y }. Different working

models lead to different estimation efficiencies.

Third, Theorem 3.1(iii) further shows that our general regression-adjusted estimator

achieves the semiparametric efficiency bound σ2 derived in Theorem 4.1 below when the

working models are correctly specified.

Fourth, when there are no adjustments so that µY (·) and µD(·) are zero, we obtain

σ2 =

∑
s∈S

p(s)
π(s)

V ar(W − τD(1)|S = s) +
∑

s∈S
p(s)

1−π(s)
V ar(Z − τD(0)|S = s) + σ2

2

P(D(1) > D(0))2
.

In this case, our estimator coincides numerically with Bugni and Gao’s (2023) fully satu-

rated estimator (i.e., NA). Indeed, we can verify that σ2 defined above is the same as the

asymptotic variance of the fully saturated estimator derived by Bugni and Gao (2023).

4 Semiparametric Efficiency Bound

Theorem 4.1. Suppose that Assumption 1 and the regularity conditions in Assump-

tion S.H.1 in the Online Supplement hold. For a = 0, 1, define Ξ1(Di, Si), Ξ0(Di, Si)

and Ξ2(Si) as Ξ1(Di, Si), Ξ0(Di, Si) and Ξ2(Si) in (3.7)–(3.9), respectively, with the

researcher-specified working model µb(a, s, x) equal to the true specification µb(a, s, x)

for all (a, b, s, x) ∈ {0, 1} × {D, Y } × SX , where SX is the joint support of (S,X).

Then the SEB for τ is σ2 :=
σ2

1+σ2
0+σ2

2

P(D(1)>D(0))2 , where σ2
1 := E

[
π(Si)Ξ

2
1(Di, Si)

]
, σ2

0 :=

E
[
(1− π(Si))Ξ

2
0(Di, Si)

]
, and σ2

2 := EΞ2
2(Si).

Several remarks are in order. First, Theorem 4.1 suggests that the asymptotic variance

of any regular root-n consistent and asymptotically normal semiparametric estimator of
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LATE is bounded from below by σ2. Second, the proof of Theorem 4.1 follows the

arguments of Armstrong (2022), which accounts for the cross-sectional dependence of

{Ai}i∈[n]. Third, the efficiency bound here matches the one derived by Frölich (2007)

under uncounfoundedness for observational data if their propensity score depends only

on Si. Fourth, Theorem 4.1 implies that various CARs (with or without achieving strong

balance) lead to the same SEB for LATE estimation. Such a result is consistent with

what Armstrong (2022) found for ATE under general randomization schemes.

5 Specific Adjustment Frameworks

5.1 Parametric Working Model

In this section, we consider estimating µb(a, s, x) for a = 0, 1, s ∈ S, and b = D, Y via

parametric regressions. Note that we do not require µb(a, s, x) to be correctly specified.

Suppose that

µY (a, Si, Xi) =
∑
s∈S

1{Si = s}ΛY
a,s(Xi, θa,s) and µD(a, Si, Xi) =

∑
s∈S

1{Si = s}ΛD
a,s(Xi, βa,s),

(5.1)

where Λb
a,s(·) for (a, b, s) ∈ {0, 1}×{D, Y }×S is a known function of Xi up to some finite-

dimensional parameter (i.e., θa,s and βa,s). The researchers have the freedom to choose

the functional forms of Λb
a,s(·), the parameter values of (θa,s, βa,s), and the methods of

estimation. As mentioned above, because the parametric models are potentially misspec-

ified, different estimation methods of the same model can lead to distinctive pseudo true

values. We will discuss several detailed examples in Sections 5.1.1, 5.1.2, and 5.1.3 below.

Here, we first focus on the general setup.

Define the estimators of (θa,s, βa,s) as (θ̂a,s, β̂a,s), and hence the corresponding feasible

parametric regression adjustments as

µ̂Y (a, s,Xi) = ΛY
a,s(Xi, θ̂a,s) and µ̂D(a, s,Xi) = ΛD

a,s(Xi, β̂a,s). (5.2)
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Assumption 4. (i) Suppose that maxa=0,1,s∈S ||θ̂a,s−θa,s||2
p−→ 0 and maxa=0,1,s∈S ||β̂a,s−

βa,s||2
p−→ 0, where ‖ · ‖2 is the Euclidean norm.

(ii) There exist a positive random variable Li and a positive constant C > 0 such that

for all a = 0, 1 and s ∈ S,

∥∥∥∥∂ΛY
a,s(Xi, θa,s)

∂θa,s

∥∥∥∥
2

≤ Li, ||ΛY
a,s(Xi, θa,s)||2 ≤ Li∥∥∥∥∂ΛD

a,s(Xi, βa,s)

∂βa,s

∥∥∥∥
2

≤ Li, ||ΛD
a,s(Xi, βa,s)||2 ≤ Li,

almost surely and E(Lqi |Si = s) ≤ C for some q > 2.

Assumption 4(i) means that (θ̂a,s, β̂a,s) are consistent estimators for (θa,s, βa,s). As-

sumption 4(ii) means that the parametric models are smooth in their parameters, which is

true for many widely used regression models such as linear, logit, and probit regressions.

This restriction can be further relaxed to allow for non-smoothness under less intuitive

entropy conditions.

Theorem 5.1. Suppose Assumption 4 hold. Then µb(a, s,Xi) and µ̂b(a, s,Xi) defined in

(5.1) and (5.2), respectively, satisfy Assumption 3.

Theorem 5.1 generalizes the intuition in (3.4) and shows that Assumption 3 holds for

general parametric models as long as the parameters are consistently estimated.

5.1.1 Optimal Linear Adjustments

In this section, we consider working models that are linear in Ψi,s where Ψi,s = Ψs(Xi)

is a function of Xi and its functional form can vary across s ∈ S. Specifically, suppose,

for a = 0, 1 and s ∈ S, that µY (a, s,X) = Ψ>i,sta,s and µD(a, s,X) = Ψ>i,sba,s, where ta,s

and ba,s are the regression coefficients whose values are freely chosen by the researchers.

The restriction that the function Ψs(·) does not depend on a = 0, 1 is innocuous as, if it

does, we can stack them up and denote Ψi,s = (Ψ>1,s(Xi),Ψ
>
0,s(Xi))

>. Similarly, it is also

innocuous to impose that the function Ψs(·) is the same for modeling µY (a, s,X) and

µD(a, s,X).
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Given that all values of ta,s and ba,s lead to consistent estimators of LATE, a natural

question to ask is what values give the most precise estimator. Let the asymptotic variance

of the adjusted LATE estimator τ̂ be as σ2, which depends on (µY (a, s,X), µD(a, s,X)),

and thus, (ta,s, ba,s). Let Θ∗ be the collection of optimal linear coefficients that minimize

the asymptotic variance of τ̂ over all possible (ta,s, ba,s), i.e.,

Θ∗ :=

 (θ∗a,s, β
∗
a,s)a=0,1,s∈S :

(θ∗a,s, β
∗
a,s)a=0,1,s∈S ∈ arg min(ta,s,ba,s)a=0,1,s∈S

σ2((ta,s, ba,s)a=0,1,s∈S).


Assumption 5. Suppose that E(||Ψi,s||q2|Si = s) ≤ C < ∞ for constants C and q > 2.

Denote Ψ̃i,s := Ψi,s−E(Ψi,s|Si = s) for s ∈ S. Then there exist constants 0 < c < C <∞

such that c < λmin(E(Ψ̃i,sΨ̃
>
i,s)) ≤ λmax(E(Ψ̃i,sΨ̃

>
i,s)) ≤ C, where for a generic symmetric

matrix A, λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of A,

respectively.

Assumption 5 requires that the regressor Ψi,s does not contain a constant term. In

fact, (3.2) and (3.3) imply that our estimator is numerically invariant to a stratum-specific

location shift. The following theorem characterizes the set of optimal linear coefficients.

Theorem 5.2. Suppose that Assumptions 1 and 5 hold. Then, we have

Θ∗ =


(θ∗a,s, β

∗
a,s)a=0,1,s∈S :√

1−π(s)
π(s)

(θ∗1,s − τβ∗1,s) +
√

π(s)
1−π(s)

(θ∗0,s − τβ∗0,s)

=
√

1−π(s)
π(s)

(θL1,s − τβL1,s) +
√

π(s)
1−π(s)

(θL0,s − τβL0,s).

 , where

θLa,s = [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sYi(Di(a))|Si = s)]

βLa,s = [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sDi(a)|Si = s)]. (5.3)

The optimality result in Theorem 5.2 relies on two key restrictions: (1) the regressor

Ψi,s is the same for treated and control units and (2) both the adjustments µY (a, s,X)
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and µD(a, s,X) are linear. It is possible to have nonlinear adjustments that are more

efficient. We will come back to this point in Sections 5.1.2, 5.1.3, and S.C.

In view of Theorem 5.2, the optimal linear coefficients are not unique. In order to

achieve the optimality, we only need to consistently estimate one point in Θ∗. For the rest

of the section, we choose (θLa,s, β
L
a,s) with the corresponding optimal linear adjustments

µY (a, s,Xi) = Ψ>i,sθ
L
a,s and µD(a, s,Xi) = Ψ>i,sβ

L
a,s. (5.4)

We estimate (θLa,s, β
L
a,s) by (θ̂La,s, β̂

L
a,s), where

Ψ̇i,a,s := Ψi,s −
1

na(s)

∑
j∈Ia(s)

Ψj,s

θ̂La,s :=

(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sΨ̇
>
i,a,s

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sYi

)

β̂La,s :=

(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sΨ̇
>
i,a,s

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sDi

)
. (5.5)

Then, the feasible linear adjustments can be defined as

µ̂Y (a, s,Xi) = Ψ>i,sθ̂
L
a,s and µ̂D(a, s,Xi) = Ψ>i,sβ̂

L
a,s. (5.6)

It is clear that θ̂La,s and β̂La,s are the OLS-estimated slopes of the following two linear

regressions using observations in Ia(s):

Yi ∼ γYa,s + Ψ>i,sθa,s and Di ∼ γDa,s + Ψ>i,sβa,s. (5.7)

Theorem 5.3. Suppose that Assumptions 1 and 5 hold. Then,

{µb(a, s,Xi)}b=D,Y,a=0,1,s∈S and {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S

defined in (5.4) and (5.6), respectively, satisfy Assumption 3. Denote the adjusted LATE

estimator with adjustment {µb(a, s,Xi)}b=D,Y,a=0,1,s∈S defined in (5.6) as τ̂L. Then, all

the results in Theorem 3.1(i)-(ii) hold for τ̂L. In addition, τ̂L is the most efficient among
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all linearly adjusted LATE estimators, and in particular, weakly more efficient than the

LATE estimator with no adjustments. In the special case that π(s) is homogeneous across

strata and Ψi,s = Xi so that the TSLS estimator τ̂TSLS is consistent, τ̂L is also weakly

more efficient than τ̂TSLS.

The asymptotic variance of the LATE estimator with the optimal linear adjustments

(τ̂L) takes the form of (3.6) with {µb(a, s,Xi)}b=D,Y,a=0,1,s∈S in (3.7)–(3.9) defined in

(5.4). It is also guaranteed to be weakly smaller than that of both τ̂NA and τ̂TSLS, which

addresses the Freedman’s critique (Freedman, 2008a, 2008b). When Ψi,s = Xi, this

asymptotic variance is the same as that of Ansel et al. (2018)’s S estimator, as shown in

Section S.B of the Online Supplement. This implies the S estimator is the most efficient

LATE estimator adjusted by linear functions of Xi, and thus, more efficient than τ̂TSLS

and τ̂NA.

5.1.2 Linear and Logistic Regressions

It is also common to consider a linear model for µY (a, s,Xi) and a logistic model for

µD(a, s,Xi), i.e.,

µY (a, s,Xi) = Ψ̊>i,sta,s and µD(a, s,Xi) = λ(Ψ̊>i,sba,s),

where Ψ̊i,s = (1,Ψ>i,s)
>, Ψi,s = Ψs(Xi) and λ(u) = exp(u)/(1 + exp(u)) is the logistic

CDF. As the model for µD(a, s,Xi) is non-linear, the optimality result established in the

previous section does not apply. We can consider fitting the linear and logistic models

by OLS and (quasi) MLE, respectively, and call this method the nonlinear (logistic)

adjustment. Specifically, define

µ̂Y (a, s,Xi) = Ψ̊>i,sθ̂
OLS
a,s and µ̂D(a, s,Xi) = λ(Ψ̊>i,sβ̂

MLE
a,s ), (5.8)

where

θ̂OLSa,s =

(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,sΨ̊
>
i,s

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,sYi

)
and
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β̂MLE
a,s = arg max

b

1

na(s)

∑
i∈Ia(s)

[
Di log(λ(Ψ̊>i,sb)) + (1−Di) log(1− λ(Ψ̊>i,sb))

]
. (5.9)

It is clear that θ̂OLSa,s and β̂MLE
a,s are the OLS and ML estimates of the following two

stratum-specific (logistic) regressions using observations in Ia(s):

Yi ∼ Ψ̊>i,sθa,s and Di ∼ λ−1(Ψ̊>i,sβa,s). (5.10)

In the logistic regression, we do allow the regressor Ψ̊i,s to contain the constant term.

Suppose θ̂OLSa,s = (ĥOLSa,s , θ̂
OLS,>
a,s )>, where ĥOLSa,s is the intercept. Then, because our adjusted

LATE estimator is invariant to the stratum-specific location shift of the adjustment term,

using µ̂Y (a, s,Xi) = Ψ̊>i,sθ̂
OLS
a,s = ĥOLSa,s + Ψ>i,sθ̂

OLS

a,s and µ̂Y (a, s,Xi) = Ψ>i,sθ̂
OLS

a,s produce the

exact same LATE estimator. In addition, we have θ̂
OLS

a,s = θ̂La,s by construction. This

means µ̂Y (a, s,Xi) used here is the same as that for the optimal linear adjustment. In

contrast, because the logistic regression is nonlinear, the non-intercept part of β̂MLE
a,s does

not equal β̂La,s. The limits of θ̂OLSa,s and β̂MLE
a,s are defined as

θOLSa,s =
(
E(Ψ̊i,sΨ̊

>
i,s|Si = s)

)−1 (
E(Ψ̊i,sYi(Di(a))|Si = s)

)
and

βMLE
a,s = arg max

b
E
([
Di(a) log(λ(Ψ̊>i,sb)) + (1−Di(a)) log(1− λ(Ψ̊>i,sb))

]
|Si = s

)
,

which imply that the working models are

µY (a, s,Xi) = Ψ̊>i,sθ
OLS
a,s and µD(a, s,Xi) = λ(Ψ̊>i,sβ

MLE
a,s ). (5.11)

Assumption 6. (i) For a = 0, 1 and s ∈ S, suppose E(Ψ̊i,sΨ̊
>
i,s|Si = s) is invertible

and

E
([
Di(a) log(λ(Ψ̊>i,sb)) + (1−Di(a)) log(1− λ(Ψ̊>i,sb))

]
|Si = s

)
has βMLE

a,s as its unique maximizer.

(ii) There exists a constant C <∞ such that maxa=0,1,s∈S E||Ψ̊i,s||q2 ≤ C <∞ for some

q > 2.
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Theorem 5.4. Suppose Assumptions 1 and 6 hold. Then,

{µb(a, s,Xi)}b=D,Y,a=0,1,s∈S and {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S

defined in (5.11) and (5.8), respectively, satisfy Assumption 3. Denote the adjusted LATE

estimator with adjustment {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S defined in (5.8) as τ̂NL. Then, all

the results in Theorem 3.1(i)-(ii) hold for τ̂NL.

Several remarks are in order. First, the nonlinear (logistic) adjustment is not opti-

mal in the sense that it does not necessarily minimize the asymptotic variance of the

corresponding LATE estimator over the class of linear/logistic adjustments. Second, the

nonlinear (logistic) adjustment is not necessarily less efficient than the optimal linear

adjustment studied in Section 5.1.1 as the true specification µD(a, s,Xi) could be nonlin-

ear. In fact, as Theorem 3.1 shows, if the adjustments are correctly specified, then τ̂NL

can achieve the semiparametric efficiency bound. Compared with the linear probability

model considered in Section 5.1.1, the logistic model is expected to be less misspeci-

fied, especially when the regressor Ψi,s contains nonlinear transformations of Xi such as

interactions and quadratic terms. Third, we will further justify the intuition above in

Section S.C, in which we let Ψi,s be the sieve basis functions with an increasing dimen-

sion and show that the nonlinear (logistic) method can consistently estimate the correct

specification under some regularity conditions. Fourth, one theoretical shortcoming of

the nonlinear (logistic) adjustment is that, unlike the optimal linear adjustment, it is not

guaranteed to be more efficient than no adjustment. We address this issue in Section

5.1.3 below.

5.1.3 Further Efficiency Improvement

Following the lead of Cohen and Fogarty (2023), we can treat the nonlinear (logistic)

adjustments as regressors and obtain the optimal linear coefficients as proposed in Section

5.1.1.11 Let θOLSa,s = (hOLSa,s , θOLSa,s ) be the probability limit of θ̂OLSa,s defined in (5.9). If βMLE
a,s

were known, the nonlinear (logistic) adjustment can be viewed as a linear adjustment.

11Cohen and Fogarty (2023)’s setting is different from ours as they consider neither CARs nor LATE.
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Specifically, denote

Φi,s := (Ψ>i,s, λ(Ψ̊>i,sβ
MLE
1,s ), λ(Ψ̊>i,sβ

MLE
0,s ))> (5.12)

tNLa,s := a


θOLS1,s

0

0

+ (1− a)


θOLS0,s

0

0

 , bNLa,s := a


0dΨ

1

0

+ (1− a)


0dΨ

0

1

 ,

where dΨ is the dimension of Ψi,s. Then, the nonlinear (logistic) adjustment can be

written as

µY (a, s,Xi) = Φ>i,st
NL
a,s and µD(a, s,Xi) = Φ>i,sb

NL
a,s .

Similarly, we can replicate no adjustments and the optimal linear adjustments with

Φi,s defined in (5.12) as regressors by letting

µY (a, s,Xi) = Φ>i,sta,s and µD(a, s,Xi) = Φ>i,sba,s

with (ta,s, ba,s) = 0 and (ta,s, ba,s) = (tLa,s, b
L
a,s), respectively, where

tLa,s := a


θL1,s

0

0

+ (1− a)


θL0,s

0

0

 , bLa,s := a


βL1,s

0

0

+ (1− a)


βL0,s

0

0

 .

Based on Theorem 5.2, we can further improve all three types of adjustments by

setting the linear coefficients of Φi,s as

θFa,s :=
(
E[Φ̃i,sΦ̃

>
i,s|Si = s]

)−1 (
[EΦ̃i,sYi(Di(a))|Si = s]

)
,

βFa,s :=
(
E[Φ̃i,sΦ̃

>
i,s|Si = s]

)−1 (
[EΦ̃i,sDi(a)|Si = s]

)
,

where Φ̃i,s = Φi,s − E(Φi,s|Si = s). The final linear adjustments with θFa,s and βFa,s are

µY (a, s,Xi) = Φ>i,sθ
F
a,s and µD(a, s,Xi) = Φ>i,sβ

F
a,s. (5.13)
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Because βMLE
a,s is unknown, we can replace it by its estimate proposed in Section 5.1.2,

i.e., define

Φ̂i,s := (Ψi,s, λ(Ψ̊>i,sβ̂
MLE
1,s ), λ(Ψ̊>i,sβ̂

MLE
0,s ))> and Φ̆i,a,s := Φ̂i,s −

1

na(s)

∑
j∈Ia(s)

Φ̂j,s.

Then, we define the estimators of θFa,s and βFa,s as

θ̂Fa,s :=

(
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sΦ̆
>
i,a,s

)−1(
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sYi

)
,

β̂Fa,s :=

(
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sΦ̆
>
i,a,s

)−1(
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sDi

)
. (5.14)

The corresponding feasible adjustments are

µ̂Y (a, s,Xi) = Φ̂>i,sθ̂
F
a,s and µ̂D(a, s,Xi) = Φ̂>i,sβ̂

F
a,s. (5.15)

Assumption 7. Suppose Assumption 5 holds for Φi,s defined in (5.12).

Theorem 5.5. Suppose that Assumptions 1, 6, and 7 hold. Then,

{µb(a, s,Xi)}b=D,Y,a=0,1,s∈S and {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S

defined in (5.13) and (5.15), respectively, satisfy Assumption 3. Denote the LATE es-

timator with regression adjustments {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S defined in (5.15) as τ̂F .

Then, all the results in Theorem 3.1(i)-(ii) hold for τ̂F . In addition, τ̂F is weakly more

efficient than τ̂L, τ̂NL and τ̂NA.

Theorem 5.5 shows that by refitting nonlinear (logistic) adjustment in a linear regres-

sion with optimal linear coefficients, we can further improve the efficiency of the adjusted

LATE estimator. Moreover, τ̂F is guaranteed to be weakly more efficient than τ̂L, τ̂NL

and τ̂NA.
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5.2 Regularized Large Dimensional Regression

We consider the nonparametric regression as the adjustments for our LATE estimator in

Section S.C of the Online Supplement, while in this section, we consider the case where

the regressor Ψ̊i,n ∈ <pn has dimension pn that can be much higher than n. In this

case, we can no longer use the nonlinear (logistic) (nonparametric) adjustment method.

Instead, we need to regularize the least squares and logistic regressions. Specifically, let

µ̂Y (a, s,Xi) = Ψ̊>i,nθ̂
R
a,s and µ̂D(a, s,Xi) = λ(Ψ̊>i,nβ̂

R
a,s), (5.16)

and the corresponding adjusted LATE estimator is denoted as τ̂R, where

θ̂Ra,s = arg min
t

−1

na(s)

∑
i∈Ia(s)

(
Yi − Ψ̊>i,nt

)2
+
%n,a(s)

na(s)
||Ω̂Y t||1,

β̂Ra,s = arg min
b

−1

na(s)

∑
i∈Ia(s)

[
Di log

(
λ(Ψ̊>i,nb)

)
+ (1−Di) log(1− λ

(
Ψ̊>i,nb)

)]
+
%n,a(s)

na(s)
||Ω̂Db||1,

where {%n,a(s)}a=0,1,s∈S are tuning parameters, Ω̂b = diag(ω̂b1, · · · , ω̂bpn) is a diagonal ma-

trix of data-dependent penalty loadings for b = D, Y , and ‖ · ‖1 is the `1 norm.12

We maintain the following assumptions for Lasso and logistic Lasso regressions.

Assumption 8. (i) For a = 0, 1. Suppose that

E
[
Yi(Di(a))|Xi, Si = s

]
= Ψ̊>i,nθ

R
a,s +RY (a, s,Xi) and

P(Di(a) = 1|Xi, Si = s) = λ(Ψ̊>i,nβ
R
a,s) +RD(a, s,Xi)

such that maxa=0,1,s∈S max(||θRa,s||0, ||βRa,s||0) ≤ hn, where ||a||0 denotes the number

of nonzero components in a.

(ii) Suppose that for q > 2,

sup
i∈[n]

||Ψ̊i,n||∞ ≤ ζn a.s. and sup
h∈[pn]

E
[
|Ψ̊q

i,n,h||Si = s
]
<∞,

12We provide more details about Ω̂b in Section S.D of the Online Supplement.
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where ‖ · ‖∞ is the `∞ norm.

(iii) Suppose that

max
a=0,1,b=D,Y,s∈S

1

na(s)

∑
i∈Ia(s)

(Rb(a, s,Xi))
2 = Op(hn log pn/n),

max
a=0,1,b=D,Y,s∈S

E
[
(Rb(a, s,Xi))

2|Si = s
]

= O(hn log pn/n),

and

sup
a=0,1,b=D,Y,s∈S,x∈X

|Rb(a, s,X)| = O(
√
ζ2
nh

2
n log pn/n).

(iv) Suppose that log(pn)ζ2
nh

2
n

n
→ 0 and log2(pn) log2(n)h2

n

n
→ 0.

(v) There exists a constant c ∈ (0, 0.5) such that

c ≤ inf
a=0,1,s∈S,x∈Supp(X)

P(Di(a) = 1|Si = s,Xi = x)

≤ sup
a=0,1,s∈S,x∈Supp(X)

P(Di(a) = 1|Si = s,Xi = x) ≤ 1− c.

(vi) Let `n be a sequence that diverges to infinity. Then there exist two constants κ1 and

κ2 such that with probability approaching one,

0 < κ1 ≤ inf
a=0,1,s∈S,||v||0≤hn`n

v>
(

1
na(s)

∑
i∈Ia(s) Ψ̊i,nΨ̊>i,n

)
v

||v||22

≤ sup
a=0,1,s∈S,||v||0≤hn`n

v>
(

1
na(s)

∑
i∈Ia(s) Ψ̊i,nΨ̊>i,n

)
v

||v||22
≤ κ2 <∞,

and

0 < κ1 ≤ inf
a=0,1,s∈S,||v||0≤hn`n

v>E
[
Ψ̊i,nΨ̊>i,n|Si = s

]
v

||v||22

≤ sup
a=0,1,s∈S,||v||0≤hn`n

v>E
[
Ψ̊i,nΨ̊>i,n|Si = s

]
v

||v||22
≤ κ2 <∞.

(vii) For a = 0, 1, let %n,a(s) = c
√
na(s)F

−1
N

(
1− 1/

[
pn log(na(s))

])
where FN(·) is the

standard normal CDF and c > 0 is a constant.
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Assumption 8 is standard in the literature and we refer interested readers to Belloni,

Chernozhukov, Fernández-Val, and Hansen (2017) for more discussion.

Theorem 5.6. Suppose Assumptions 1 and 8 hold. Then {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S

defined in (5.16) and µb(a, s,X) = µb(a, s,X) satisfy Assumption 3. All the results in

Theorem 3.1(i)-(ii) hold for τ̂R. In addition, τ̂R achieves the SEB.

Due to the approximate sparsity, the Lasso method consistently estimates the correct

specification, which explains why the corresponding estimator can achieve the SEB.

6 Simulations

6.1 Data Generating Processes

Three data generating processes (DGPs) are used to assess the finite sample performance

of the estimation and inference methods introduced in the paper. Suppose that

Yi(d) = ad + α(Xi, Zi) + εd+1,i, d = 0, 1, Di(0) = 1{b0 + γ(Xi, Zi) > c0ε3,i},

Di(1) =

 1{b1 + γ(Xi, Zi) > c1ε4,i} if Di(0) = 0,

1 otherwise,

Di = Di(1)Ai +Di(0)(1− Ai), and Yi = Yi(1)Di + Yi(0)(1−Di),

where {Xi, Zi}i∈[n], α(·, ·), {ai, bi, ci}i=0,1 and {εj,i}j∈[4],i∈[n] are specified as follows.

(i) Let Zi be i.i.d. according to standardized Beta(2, 2), Si =
∑4

j=1 1{Zi ≤ gj}, and

(g1, g2, g3, g4) = (−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). Xi := (X1,i, X2,i)
>, where X1,i

follows a uniform distribution on [−2, 2], X2,i := Zi +N(0, 1), and X1,i and X2,i are

independent. Further define

α(Xi, Zi) = 0.7X2
1,i +X2,i + 4Zi, γ(Xi, Zi) = 0.5X2

1,i − 0.5X2
2,i − 0.5Z2

i ,

a1 = 2, a0 = 1, b1 = 1.3, b0 = −1, c1 = c0 = 3, and (ε1,i, ε2,i, ε3,i, ε4,i)
> i.i.d∼ N(0,Σ),
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where

Σ =



1 0.5 0.52 0.53

0.5 1 0.5 0.52

0.52 0.5 1 0.5

0.53 0.52 0.5 1


.

(ii) Let Z be i.i.d. according to uniform[−2, 2], Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, g2, g3, g4) =

(−1, 0, 1, 2). Let Xi := (X1,i, X2,i)
>, where X1,i follows a uniform distribution on

[−2, 2], X2,i follows a standard normal distribution, and X1,i and X2,i are indepen-

dent. Further, define

α(Xi, Zi) = −0.8X1,i ·X2,i + Z2
i + Zi ·X1,i, γ(Xi, Zi) = 0.5X2

1,i − 0.5X2
2,i − 0.5Z2

i ,

a1 = 2, a0 = 1, b1 = 1, b0 = −1, c1 = c0 = 3, and (ε1,i, ε2,i, ε3,i, ε4,i)
> are defined in

DGP(i).

(iii) Let Z be i.i.d. according to standardized Beta(2, 2), Si =
∑4

j=1 1{Zi ≤ gj},

and (g1, g2, g3, g4) = (−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). Let Xi := (X1,i, · · · , X20,i)
>,

where Xi
i.i.d∼ N(020×1,Ω) where Ω is the Toeplitz matrix

Ω =



1 0.5 0.52 · · · 0.519

0.5 1 0.5 · · · 0.518

0.52 0.5 1 · · · 0.517

...
...

...
. . .

...

0.519 0.518 0.517 · · · 1


.

Further define α(Xi, Zi) =
∑20

k=1Xk,iβk + Zi, γ(Xi, Zi) =
∑20

k=1X
>
k,iγk − Zi, with

βk =
√

6/k2 and γk = −2/k2. Moreover, a1 = 2, a0 = 1, b1 = 2, b0 = −1, c1 = c0 =
√

7, and (ε1,i, ε2,i, ε3,i, ε4,i)
> are defined in DGP(i).

For each data generating process, we consider the four randomization schemes (SRS,
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WEI, BCD, SBR) defined as in Examples 1–4 in Appendix S.A, respectively. Specifically,

for WEI and BCD, we set f(x) = (1− x)/2 and λ = 0.75, respectively.

We compute the true LATE effect τ0 using Monte Carlo simulations, with sample size

being 10,000 and the number of Monte Carlo simulations being 1,000. We gauge the size

and power of various tests by testing the hypotheses H0 : τ = τ0 and H0 : τ = τ0 + 1,

respectively. All the tests are carried out at 5% level of significance, and with the number

of Monte Carlo simulations being 10,000.

6.2 Estimators for Comparison

For DGPs(i)-(ii), we consider the following estimators.

(i) NA: the fully saturated estimator by Bugni and Gao (2023), which is equivalent to

setting µ̄b(a, s, x) = µ̂b(a, s, x) = 0 for b = D, Y , a = 0, 1, all s and all x.

(ii) TSLS: τ̂TSLS defined in Section 2.4. We use the usual IV heteroskedasticity-robust

standard error (i.e., σ̂TSLS,naive/
√
n) for inference.

(iii) L: the optimal linear estimator with Ψi,s = Xi and the pseudo true values being

estimated by θ̂La,s and β̂La,s defined in (5.5).

(iv) S: Ansel et al.’s (2018) S estimator with Xi as regressor. We use the standard

error of the S estimator (i.e., σ̂S/
√
n; see Section S.B of the Online Supplement for

details) for inference.

(v) NL: the nonlinear (logistic) estimator with Ψi,s = Xi, and the pseudo true values

being estimated by θ̂OLSa,s and β̂MLE
a,s defined in (5.9).

(vi) F: the further efficiency improving estimator with Ψi,s = Xi, and the pseudo true

values being estimated by θ̂Fa,s and β̂Fa,s defined in (5.14).

(vii) NP: the nonparametric estimator outlined in Section S.C of the Online Supplement.

The following 9 bases of a spline of order 3 are chosen as the sieve regressors:

Ψ̊i,n =
(

1, X1,i, X2,i, X
2
1,i, X

2
2,i, X1,i1{X1,i > t1}, X2,i1{X2,i > t2}, X1,iX2,i,
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X1,i1{X1,i > t1}X2,i1{X2,i > t2}
)>
, (6.1)

where t1 and t2 are the sample medians of {X1,i}i∈[n] and {X2,i}i∈[n], respectively.13

The adjustments are computed as in (S.C.1) of the Online Supplement.

(viii) SNP: Ansel et al.’s (2018) S estimator with Ψ̊i,n defined in (6.1) as regressor. We

use the standard error of the S estimator (i.e., σ̂S/
√
n; see Section S.B of the Online

Supplement for details) for inference.

(ix) R: a regularized estimator. The nonparametric estimator outlined in Section S.C of

the Online Supplement might not have a good size when the sample size is small,

so we propose to use Lasso to select the sieve regressors. The sieves regressors

Ψ̊i,n are the same as in (6.1). The adjustments are computed as in (5.16). The

tuning parameter is chosen as: %n,a(s) = 1.1
√
na(s)F

−1
N (1− 1/(pn log(na(s)))). We

compute the data-driven penalty loading matrices Ω̂Y and Ω̂D following the iterative

procedure proposed by Belloni et al. (2017).14

For DGP(iii), we consider the estimator with no adjustments (NA), and the lasso

estimators θ̂Ra,s and β̂Ra,s defined in (5.16) with Ψ̊i,n = (1,Ψ>i,n)> = (1, X>i )>. The tuning

parameters are choosing as: %n,a(s) = 1.1
√
na(s)F

−1
N (1− 1/(pn log(na(s)))).

6.3 Simulation Results

Tables 2-4 present the empirical sizes and powers of the true null H0 : τ = τ0 and false

null H0 : τ = τ0 + 1 under DGPs (i)-(iii), respectively. We also report the ratio of

the median length of the confidence intervals of a particular estimator to that of the

NA estimator is in the corresponding bracket. Note that none of the working models

in DGPs (i)-(iii) is correctly specified. Consider DGP (i). When n = 200, both the

NA and TSLS estimators are slightly under-sized. Both the NP and SNP estimators are

oversized because the numbers of sieve regressors are relatively large compared to the

13The formal definition of spline is given in Section S.D of the Online Supplement.
14Matlab code provided by Belloni et al. (2017) and the R package “hdm” provide a built-in option for

this iterative procedure.
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sample size, while the R estimator has the correct size thanks to the Lasso selection of

the sieve regressors. The L estimator performs the same as the S estimator. All other

estimators have sizes close to the nominal level of 5%. This confirms that our estimation

and inference procedures are robust to misspecification.

[Insert Table 2 here.]

In terms of power, the NA estimator has the lowest power, corroborating the belief that

one should carry out the regression adjustment whenever covariates correlate with the

potential outcomes. The powers of the other estimators are much higher. In particular,

the power of the F estimator is higher than those of the NA, TSLS, L, and NL estimators,

which is consistent with our theory that the F estimator is weakly more efficient than those

estimators. The NP, SNP, and R estimators enjoy the highest powers as a nonparametric

model could approximate the true specification very well. The NP and SNP estimators

have more size distortions than the R estimator when the sample size is 200. When

the sample size is increased to 400, virtually all the sizes and powers of the estimators

improve, and all the observations continue to hold.

[Insert Table 3 here.]

We also report the ratio of the median length of the confidence intervals of a partic-

ular estimator to that of the NA estimator in the corresponding parentheses. Generally

speaking, the confidence intervals of the TSLS and adjusted estimators (L, NL, F, NP,

and R) are 20%-30% shorter, in terms of the median, than that of the NA estimator.

Most observations uncovered in DGP (i) carry forward to DGP (ii). Two new patterns

emerge. First, the powers of the L, S, NL, F, NP, SNP, and R estimators are much higher

than those of the NA and TSLS estimators. Second, the ratio of the median length of

the confidence intervals of the TSLS estimator is as wide as that of the NA estimator,

whereas the confidence intervals of the adjusted estimators (L, NL, F, NP, and R) become

25%-40% shorter, in terms of the median, than that of the NA estimator. This is probably

because the true specifications for Yi(a) become more nonlinear.

We now consider DGP (iii). In this setting, only the NA and R estimators are feasible.

32



When n = 200, both estimators have the correct sizes but the R estimator has consid-

erably higher power. When n = 400, the sizes of these two estimators remain relatively

unchanged, while their powers improve with a diverging gap. The confidence intervals

of the R estimator are 60%-65% shorter, in terms of the median, than that of the NA

estimator.

[Insert Table 4 here.]

In Section S.R of the Online Supplement, we simulate data with heterogeneous {π(s)}.

We find that all estimators except TSLS have their empirical rejection rates close to the

nominal size of 5% under the null. TSLS, on the other hand, has around 15% rejection

rate when n = 1200. This indicates the TSLS estimator can be inconsistent when {π(s)}

are heterogeneous, in line with Theorem 2.1.

6.4 Practical Recommendation

If researchers want to use parametric adjustments without tuning parameters, we recom-

mend the F estimator, which is guaranteed to be weakly more efficient than TSLS, L,

and NL estimators. Regressors Ψi,s can include linear, quadratic and interaction terms

of the original covariates. If researchers want to achieve the SEB by using sieve bases

and/or the dimension of covariates is high relative to the sample size, we recommend the

R estimator. In general, the F and R estimators tend to have similar size, but the R

estimator tends to have better power.

7 Empirical Application

Banking the unbanked is considered to be the first step toward broader financial inclusion

– the focus of the World Bank’s Universal Financial Access 2020 initiative.15 In a field

experiment with a CAR design, Dupas et al. (2018) examined the impact of expanding

access to basic saving accounts for rural households living in three countries: Uganda,

15https://www.worldbank.org/en/topic/financialinclusion/brief/achieving-universal-financial-access-
by-2020
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Malawi, and Chile. In particular, apart from the intent-to-treat effects for the whole

sample, they also studied the local average treatment effects for the households who

actively used the accounts. This section presents an application of our regression adjusted

estimators to the same dataset to examine the LATEs of opening bank accounts on savings

balance– a central outcome of interest in their study.

We focus on the experiment conducted in Uganda. The sample consists of 2,160

households who were randomized with a CAR design. Specifically, within each of 41

strata formed by gender, occupation, and bank branch, half of households were randomly

allocated to the treatment group, the other half to the control one. Households in the

treatment group were then offered a voucher to open bank accounts with no financial

costs. However, not every treated household ever opened and used the saving accounts

for deposit. In fact, among those households with treatment assignment, only 41.87%

of them opened the accounts and made at least one deposit within 2 years. Subject

compliance is therefore imperfect in this experiment.

The randomization design apparently satisfies statements (i), (ii) and (iii) of Assump-

tion 1. The target fraction of treatment assignment is 1/2. Because maxs∈S |Bn(s)
n(s)
| ≈

0.056, it is plausible to claim that Assumption 1(iv) is also satisfied. Since households

in the control group need to pay for the fees of opening accounts while the treated ones

bear no financial costs, no-defiers statement in Assumption 1(v) holds plausibly in this

case.

One of the key analyses in Dupas et al. (2018) is to estimate the treatment effects on

savings for active users – households who actually opened the accounts and made at least

one deposit within 2 years. We follow their footprints to estimate the same LATEs at

savings balance.16 To maintain comparability, for each outcome variable, we also keep Xi

similar to those used in Dupas et al. (2018) for our adjusted estimators.17 Due to the low

16Savings balance includes savings in formal financial intuitions, mobile money, cash at home or in
secret place, savings in ROSCA/VSLA, savings with friends/family, other cash savings, total formal
savings, total informal savings, and total savings (See Dupas et al. (2018) for details). We use data
from the first follow-up survey and exclude other cash savings because only 2% of the households in the
sample reported having it.

17The description of these estimators is similar to that in Section 6. Except for savings in formal
financial institutions, mobile money, and total formal savings, Xi includes baseline value for the outcome
of interest, baseline value of total income, and a dummy for missing observations. For savings in formal
financial institutions, mobile money, and total formal savings, since their baseline values are all zero, we
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dimension of covariates used in the regression adjustments, we focus on the performance

of the methods “NA”, “TSLS”, “L”, “NL”, and “F”.

Table 5 presents the LATE estimates and their standard errors (in parentheses) es-

timated by these methods.18 These results lead to four observations. First, consistent

with the theoretical and simulation results, the standard errors for the LATE estimates

with regression adjustments are lower than those without adjustments. This observation

holds for all the outcome variables and all the regression adjustment methods. Over

the eight outcome variables, the standard errors estimated by regression adjustments are

on average around 8% lower than those without adjustment. In particular, when the

outcome variable is total informal savings, the standard errors obtained via the further

improvement adjustment – “F” method is about 18% lower than those without adjust-

ment. This means that regression adjustments, with the similar covariates used in Dupas

et al. (2018), can achieve sizable efficiency gains in estimating the LATEs.

[Insert Table 5 here.]

Second, the standard errors for the regression-adjusted LATE estimates are mostly

lower than those obtained by the usual TSLS procedure. Especially, when the outcome

variables are mobile money and total informal savings, the standard errors obtained via

“F” method are about 7.1% and 5%, respectively, lower than those by TSLS. When the

outcome variable is savings in friends/family, the standard error estimated by the optimal

linear adjustment – “L” method is around 6.7% lower than that obtained by TSLS.

This means that, compared with our regression-adjusted methods, TSLS is generally less

efficient to estimate the LATEs under CAR.

Third, the standard errors for the LATE estimates with regression adjustments are

similar in terms of magnitude. This implies that all the regression adjustments achieve

similar efficiency gain in this case.

Finally, as in Dupas et al. (2018), for the households who actively use bank accounts,

set Xi as the baseline value of total savings, baseline value of total income, and a dummy for missing
observations.

18For each outcome variable, we filter out the observations with missing values of outcome variables
or the strata with less than 10 observations. The total trimmed observations are less than 10% of the
whole sample in Dupas et al. (2018)).
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we find that reducing the cost of opening a bank account can significantly increase their

savings in formal institutions. We also observe the evidence of crowd-out – mainly moving

cash from saving at home to saving in bank.
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Frölich, M. (2007). Nonparametric iv estimation of local average treatment effects with

covariates. Journal of Econometrics 139 (1), 35–75.

Hahn, J., K. Hirano, and D. Karlan (2011). Adaptive experimental design using the

propensity score. Journal of Business & Economic Statistics 29 (1), 96–108.

Heiler, P. (2022). Efficient covariate balancing for the local average treatment effect.

Journal of Business & Economic Statistics 40 (4), 1569–1582.
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Table 1: Empirical Papers Using CARs with Imperfect Compliance

Journal Method Covariates Strata fixed effects

Royer et al. (2015) AEJ: Applied TSLS Yes Yes
Atkin et al. (2017) QJE TSLS Yes Yes
Dupas et al. (2018) AEJ: Applied TSLS Yes Yes
Marx and Turner (2019) AEJ: Policy TSLS Yes Yes
Jha and Shayo (2019) Econometrica TSLS Yes Yes
Himmler et al. (2019) AEJ: Applied TSLS Yes Yes
Bolhaar et al. (2019) AEJ: Applied TSLS Yes Yes
Davis and Heller (2020) ReStat TSLS Yes Yes
Beam and Quimbo (2021) ReStat TSLS Yes Yes
Okunogbe and Pouliquen (2022) AEJ: Policy TSLS Yes Yes

NP,R F L=S NA

NL TSLS

SFE IV

Figure 1: Efficiency of Various LATE Estimators (from the most efficient to the least).
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Table 2: Size and Power for DGP(i)

n = 200 n = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Size

NA 0.035 0.031 0.031 0.034 0.046 0.043 0.042 0.039

TSLS 0.036 0.034 0.032 0.038 0.045 0.040 0.044 0.042
[77.8%] [78.0%] [77.6%] [77.8%] [78.0%] [77.9%] [77.8%] [78.0%]

L 0.044 0.041 0.041 0.045 0.048 0.044 0.047 0.047
[76.6%] [76.6%] [76.5%] [76.5%] [77.3%] [77.1%] [77.2%] [77.4%]

S 0.044 0.041 0.041 0.045 0.048 0.044 0.047 0.047
[76.6%] [76.6%] [76.5%] [76.5%] [77.3%] [77.1%] [77.2%] [77.4%]

NL 0.044 0.042 0.040 0.045 0.049 0.045 0.047 0.047
[77.5%] [77.3%] [77.2%] [77.2%] [77.6%] [77.5%] [77.5%] [77.6%]

F 0.054 0.052 0.049 0.053 0.054 0.048 0.052 0.050
[74.7%] [74.9%] [74.6%] [74.5%] [75.4%] [75.3%] [75.3%] [75.6%]

NP 0.109 0.094 0.091 0.090 0.073 0.062 0.067 0.062
[81.6%] [80.5%] [79.5%] [79.0%] [69.3%] [69.4%] [69.5%] [69.4%]

SNP 0.100 0.091 0.090 0.085 0.070 0.061 0.063 0.060
[73.2%] [72.3%] [72.0%] [71.8%] [68.0%] [67.9%] [68.1%] [68.0%]

R 0.053 0.050 0.049 0.055 0.057 0.049 0.051 0.047
[70.6%] [70.3%] [70.1%] [70.1%] [69.5%] [69.5%] [69.5%] [69.6%]

Power

NA 0.170 0.169 0.170 0.170 0.293 0.289 0.291 0.294

TSLS 0.260 0.254 0.260 0.255 0.430 0.433 0.443 0.436
[77.8%] [78.0%] [77.6%] [77.8%] [78.0%] [77.9%] [77.8%] [78.0%]

L 0.274 0.264 0.273 0.268 0.439 0.440 0.447 0.444
[76.6%] [76.6%] [76.5%] [76.5%] [77.3%] [77.1%] [77.2%] [77.4%]

S 0.274 0.264 0.273 0.268 0.439 0.440 0.447 0.444
[76.6%] [76.6%] [76.5%] [76.5%] [77.3%] [77.1%] [77.2%] [77.4%]

NL 0.268 0.257 0.267 0.261 0.434 0.435 0.443 0.439
[77.5%] [77.3%] [77.2%] [77.2%] [77.6%] [77.5%] [77.5%] [77.6%]

F 0.299 0.292 0.296 0.293 0.460 0.454 0.466 0.463
[74.7%] [74.9%] [74.6%] [74.5%] [75.4%] [75.3%] [75.3%] [75.6%]

NP 0.299 0.284 0.289 0.280 0.509 0.506 0.510 0.509
[81.6%] [80.5%] [79.5%] [79.0%] [69.3%] [69.4%] [69.5%] [69.4%]

SNP 0.344 0.331 0.340 0.333 0.532 0.526 0.533 0.532
[73.2%] [72.3%] [72.0%] [71.8%] [68.0%] [67.9%] [68.1%] [68.0%]

R 0.325 0.315 0.325 0.321 0.516 0.517 0.514 0.516
[70.6%] [70.3%] [70.1%] [70.1%] [69.5%] [69.5%] [69.5%] [69.6%]
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Table 3: Size and Power for DGP(ii)

n = 200 n = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Size

NA 0.033 0.031 0.029 0.030 0.045 0.042 0.043 0.041

TSLS 0.035 0.033 0.031 0.033 0.045 0.044 0.045 0.040
[99.5%] [99.4%] [99.6%] [99.4%] [99.8%] [99.8%] [99.8%] [99.7%]

L 0.044 0.040 0.044 0.038 0.049 0.047 0.046 0.046
[74.7%] [74.5%] [74.8%] [74.6%] [75.5%] [75.6%] [75.6%] [75.5%]

S 0.044 0.040 0.044 0.038 0.049 0.047 0.046 0.046
[74.7%] [74.5%] [74.8%] [74.6%] [75.5%] [75.6%] [75.6%] [75.5%]

NL 0.043 0.039 0.042 0.037 0.049 0.047 0.046 0.046
[75.3%] [75.1%] [75.5%] [75.2%] [75.7%] [75.8%] [75.8%] [75.6%]

F 0.052 0.047 0.048 0.043 0.050 0.049 0.051 0.049
[70.2%] [69.7%] [70.3%] [70.4%] [70.8%] [70.8%] [70.9%] [70.7%]

NP 0.100 0.084 0.087 0.079 0.062 0.063 0.065 0.062
[69.2%] [67.7%] [67.3%] [67.7%] [60.4%] [60.3%] [60.4%] [60.5%]

SNP 0.098 0.084 0.085 0.079 0.061 0.064 0.064 0.063
[63.7%] [62.8%] [63.0%] [62.8%] [59.7%] [59.8%] [59.7%] [59.8%]

R 0.055 0.051 0.049 0.049 0.052 0.051 0.048 0.045
[63.3%] [62.8%] [63.2%] [63.0%] [62.1%] [62.1%] [62.2%] [62.0%]

Power

NA 0.202 0.208 0.208 0.206 0.350 0.351 0.351 0.345

TSLS 0.204 0.212 0.211 0.210 0.353 0.352 0.354 0.346
[99.5%] [99.4%] [99.6%] [99.4%] [99.8%] [99.8%] [99.8%] [99.7%]

L 0.334 0.331 0.342 0.340 0.512 0.526 0.524 0.516
[74.7%] [74.5%] [74.8%] [74.6%] [75.5%] [75.6%] [75.6%] [75.5%]

S 0.334 0.331 0.342 0.340 0.512 0.526 0.524 0.516
[74.7%] [74.5%] [74.8%] [74.6%] [75.5%] [75.6%] [75.6%] [75.5%]

NL 0.327 0.324 0.335 0.333 0.510 0.523 0.523 0.515
[75.3%] [75.1%] [75.5%] [75.2%] [75.7%] [75.8%] [75.8%] [75.6%]

F 0.372 0.374 0.379 0.375 0.562 0.568 0.566 0.561
[70.2%] [69.7%] [70.3%] [70.4%] [70.8%] [70.8%] [70.9%] [70.7%]

NP 0.378 0.381 0.387 0.386 0.649 0.663 0.653 0.655
[69.2%] [67.7%] [67.3%] [67.7%] [60.4%] [60.3%] [60.4%] [60.5%]

SNP 0.431 0.443 0.442 0.440 0.663 0.676 0.668 0.668
[63.7%] [62.8%] [63.0%] [62.8%] [59.7%] [59.8%] [59.7%] [59.8%]

R 0.419 0.429 0.431 0.432 0.644 0.661 0.657 0.648
[63.3%] [62.8%] [63.2%] [63.0%] [62.1%] [62.1%] [62.2%] [62.0%]

Table 4: Size and Power for DGP(iii)

n = 200 n = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Size
NA 0.046 0.043 0.046 0.048 0.046 0.047 0.045 0.047

R 0.064 0.058 0.061 0.060 0.057 0.061 0.058 0.060
[37.2%] [36.9%] [36.7%] [36.8%] [34.4%] [34.4%] [34.5%] [34.5%]

Power
NA 0.173 0.170 0.171 0.177 0.233 0.238 0.235 0.239

R 0.516 0.524 0.533 0.534 0.811 0.815 0.817 0.815
[37.2%] [36.9%] [36.7%] [36.8%] [34.4%] [34.4%] [34.5%] [34.5%]
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Table 5: Impacts on Saving Stocks in 2010 US Dollars

Y n NA TSLS L NL F

Formal 1968 20.558 21.154 22.160 22.196 22.743
fin. inst. (3.067) (3.015) (2.965) (2.976) (2.942)

[0.000] [0.000] [0.000] [0.000] [0.000]
Mobile 1972 -0.208 -0.174 -0.291 -0.292 -0.302

(0.223) (0.224) (0.212) (0.213) (0.208)
[0.352] [0.439] [0.169] [0.169] [0.147]

Total 1966 20.399 21.097 21.924 21.986 22.335
formal (3.089) (3.034) (2.979) (2.994) (2.956)

[0.000] [0.000] [0.000] [0.000] [0.000]
Cash at 1971 -10.826 -7.456 -9.004 -8.904 -8.373
home (5.003) (4.404) (4.401) (4.355) (4.354)

[0.030] [0.090] [0.041] [0.041] [0.054]
ROSCA/ 1975 -1.933 -2.333 -1.242 -1.255 0.651
VSLA (1.971) (1.858) (1.794) (1.812) (1.940)

[0.327] [0.209] [0.489] [0.488] [0.737]
Friends/ 1974 -3.621 -3.346 -1.428 -1.536 -2.067
family (2.040) (1.999) (1.866) (2.015) (2.042)

[0.076] [0.094] [0.444] [0.446] [0.311]
Total 1960 -17.643 -14.317 -15.665 -15.693 -14.137
informal (6.200) (5.351) (5.185) (5.196) (5.082)

[0.004] [0.007] [0.003] [0.003] [0.005]
Total 1952 2.787 7.153 7.169 7.193 8.962
savings (7.290) (6.368) (6.197) (6.218) (6.142)

[0.702] [0.261] [0.247] [0.247] [0.145]

Notes: The table reports the LATE estimates of opening bank accounts on saving stocks.
NA, TSLS, L, NL, and F stand for the no-adjustment, TSLS, optimal linear, nonlinear
(logistic), and further efficiency improvement, respectively. n is the number of households.
Standard errors are in parentheses. P-values are in square brackets.
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Abstract

Section S.A contains four commonly used Covariate-adaptive treatment assignment

rules. Section S.B considers the S estimator proposed by Ansel, Hong, and Li (2018).

We then examine the efficiency of τ̂ in the context of nonparametric adjustments in

Section S.C. Section S.D provides the implementation details for sieve and Lasso regres-

sions. Section S.E briefly discusses the regression adjustment under full compliance.

Sections S.F–S.P prove Theorems 2.1–5.6, and S.B.1, respectively. Section S.Q collects

technical lemmas used in the Proof of Theorem 3.1. Section S.R provides an additional

simulation to demonstrate that when {π(s)} are heterogeneous, the TSLS estimator

could be inconsistent.
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S.A Covariate-Adaptive Treatment Assignment Rules

Example 1 (SRS). Let Ak be a Bernoulli random variable, independent of {Si}ni=1, 6=k and

{Ai}k−1
i=1 , with success rate π(s) when Sk = s for k = 1, . . . , n. That is,

P
(
Ak = 1

∣∣{Si}ni=1, {Ai}k−1
i=1

)
= P(Ak = 1|Sk) = π(Sk).

Example 2 (WEI). This design was first proposed by Wei (1978). Let nk−1(Sk) =
∑k−1

i=1 1{Si =

Sk}, Bk−1(Sk) =
∑k−1

i=1

(
Ai − 1

2

)
1{Si = Sk}, and

P
(
Ak = 1

∣∣{Si}ki=1, {Ai}k−1
i=1

)
= f

(
2Bk−1(Sk)

nk−1(Sk)

)
,

where f(·) : [−1, 1] 7→ [0, 1] is a pre-specified non-increasing function satisfying f(−x) =

1− f(x). Here, B0(S1)
n0(S1)

and B0(S1) are understood to be zero.

Example 3 (BCD). The treatment status is determined sequentially for 1 ≤ k ≤ n as

P
(
Ak = 1|{Si}ki=1, {Ai}k−1

i=1

)
=


1
2

if Bk−1(Sk) = 0

λ if Bk−1(Sk) < 0

1− λ if Bk−1(Sk) > 0,

where Bk−1(s) is defined as above and 1
2
< λ ≤ 1.

Example 4 (SBR). For each stratum, bπ(s)n(s)c units are assigned to treatment and the

rest are assigned to control.

S.B The S Estimator in Ansel et al. (2018)

Ansel et al. (2018) propose a LATE estimator adjusted with extra covariates. It takes the

form

τ̂S :=

∑
s∈S p̂(s)(γ̂

Y
1s − γ̂Y0s + (ν̂Y1s − ν̂Y0s)>X̄s)∑

s∈S p̂(s)(γ̂
D
1s − γ̂D0s + (ν̂D1s − ν̂D0s)>X̄s)

,

where p̂(s) := n(s)/n, X̄s := 1
np̂(s)

∑
i∈[n] Xi1{Si = s}, and (γ̂Yas, γ̂

D
as, ν̂

Y
as, ν̂

D
as) for a = 0, 1 are

the estimated coefficients of the four sets of stratum-specific regressions using only the s
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stratum:

(1− Ai)Yi = (1− Ai)(γY0s +X>i ν
Y
0s + eY0i), AiYi = Ai(γ

Y
1s +X>i ν

Y
1s + eY1i)

(1− Ai)Di = (1− Ai)(γD0s +X>i ν
D
0s + eD0i), AiDi = Ai(γ

D
1s +X>i ν

D
1s + eD1i).

Interpret (γ̂YaSi
, γ̂DaSi

, ν̂YaSi
, ν̂DaSi

) for a = 0, 1 as the estimated coefficients of the four sets of

stratum-specific regressions using only the Si stratum.

Under Assumption 1 and Assumption 2 of our paper, Ansel et al. (2018) show that

τ̂S is a consistent estimator of τ , asymptotically normal, and the most efficient among the

estimators studied in their paper (π(s) can be heterogenous across strata). To define the

explicit expression for the asymptotic variance of τ̂S, denoted as σ2
S, we need to introduce

addition notation. For s ∈ S, let X̃is := Xi − E(Xi|Si = s),

ρiSi
(1) :=

Yi(Di(1))−Di(1)τ −X>i νY D1Si

π(Si)
+X>i (νY D1Si

− νY D0Si
)

ρiSi
(0) :=

Yi(Di(0))−Di(0)τ −X>i νY D0Si

1− π(Si)
−X>i (νY D1Si

− νY D0Si
)

νY D1s :=
[
E(X̃isX̃

>
is |Si = s)

]−1

E
(
X̃is

[
Yi
(
Di(1)

)
−Di(1)τ

]
|Si = s

)
,

νY D0s :=
[
E(X̃isX̃

>
is |Si = s)

]−1

E
(
X̃is

[
Yi
(
Di(0)

)
−Di(0)τ

]
|Si = s

)
.

σ2
S1 := E

[
π(Si)

{
ρiSi

(1)− E[ρiSi
(1)|Si]

}2
]

σ2
S0 := E

[(
1− π(Si)

){
ρiSi

(0)− E[ρiSi
(0)|Si]

}2
]

σ2
S2 := E

[(
E
[
Yi(Di(1))− Yi(Di(0))− τ(Di(1)−Di(0))|Si

])2
]
.

In addition, define

ρ̂iSi
(1) :=

Yi −Diτ̂S −X>i ν̂Y D1Si

π̂(Si)
+X>i (ν̂Y D1Si

− ν̂Y D0Si
)

ρ̂iSi
(0) :=

Yi −Diτ̂S −X>i ν̂Y D0Si

1− π̂(Si)
−X>i (ν̂Y D1Si

− ν̂Y D0Si
)
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σ̂2
S1 :=

1

n

∑
i∈[n]

Ai

[
ρ̂iSi

(1)− 1

n1(Si)

∑
j∈I1(Si)

ρ̂jSj
(1)

]2

σ̂2
S0 :=

1

n

∑
i∈[n]

(1− Ai)
[
ρ̂iSi

(0)− 1

n0(Si)

∑
j∈I0(Si)

ρ̂jSj
(0)

]2

σ̂2
S2 :=

1

n

∑
i∈[n]

(
1

n1(Si)

∑
j∈I1(Si)

(Yj − τ̂SDj)−
1

n0(Si)

∑
j∈I0(Si)

(Yj − τ̂SDj)

)2

σ̂2
S :=

σ̂2
S1 + σ̂2

S0 + σ̂2
S2(∑

s∈S p̂(s)(γ̂
D
1s − γ̂D0s + (ν̂D1s − ν̂D0s)>X̄s)

)2

where ν̂Y DaSi
:= ν̂YaSi

− τ̂S ν̂DaSi
for a = 0, 1.

Theorem S.B.1. Suppose Assumptions 1 and 2 hold. Then,

(i)

σ2
S =

σ2
S1 + σ2

S0 + σ2
S2

(E[Di(1)−Di(0)])2
. (S.B.1)

(ii)

σ̂2
S

p−→ σ2
S.

It can be shown that σ2
Sa ≥ σ2

a for a = 0, 1 and σ2
S2 = σ2

2, where the inequalities are

strict except special cases such as E(Yi(Di(a)) − Di(a)τ |Xi, Si = s) is linear in Xi, and σ2
a

for a = 0, 1, 2 are defined in Theorem 4.1. This implies in general, the S estimator is not

semiparametrically most efficient.

Theorem S.B.2. Suppose that Assumptions 1 and 2 hold. Moreover, suppose that π(s) is

the same across s ∈ S. Then τ̂S is more efficient than τ̂TSLS in the sense that σ2
S ≤ σ2

TSLS.

Theorem S.B.2 could be deduced from Theorem 5.3. Both τ̂TSLS and τ̂S use linear

adjustments of Xi, but Theorem S.B.2 states that τ̂S is more efficient than τ̂TSLS. In the

discussion following Theorem 5.3, we further show that τ̂S achieves the minimum asymptotic

variance among the class of estimators with linear adjustments. On the other hand, nonlinear

adjustments may be more efficient than the optimal linear adjustment.
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S.C Nonparametric Adjustments

In this section, we consider the nonparametric regression as the adjustments for our LATE

estimator. Specifically, we use linear and logistic sieve regressions to estimate the true spec-

ifications µY (a, s,Xi) and µD(a, s,Xi), respectively. For implementation, the nonparametric

adjustments are exactly the same as nonlinear (logistic) adjustments studied in Section 5.1.2.

Theoretically, we will let the regressors Ψ̊i,s in (5.8) be sieve basis functions whose dimensions

will diverge to infinity as the sample size increases. For notational simplicity, we suppress

the subscript s and denote the sieve regressors as Ψ̊i,n ∈ <hn , where the dimension hn can

diverge with the sample size. The corresponding feasible regression adjustments are

µ̂Y (a, s,Xi) = Ψ̊>i,nθ̂
NP
a,s and µ̂D(a, s,Xi) = λ(Ψ̊>i,nβ̂

NP
a,s ), (S.C.1)

where

θ̂NPa,s =

(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nΨ̊>i,n

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nYi

)
and

β̂NPa,s = arg max
b

1

na(s)

∑
i∈Ia(s)

[
Di log(λ(Ψ̊>i,nb)) + (1−Di) log(1− λ(Ψ̊>i,nb))

]
.

We finally denote the corresponding adjusted LATE estimator as τ̂NP .

Assumption S.C.1. (i) There exist constants 0 < c < C <∞ such that with probability

approaching one,

c ≤ λmin

(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nΨ̊>i,n

)
≤ λmax

(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nΨ̊>i,n

)
≤ C and

c ≤ λmin

(
E[Ψ̊i,nΨ̊>i,n|Si = s]

)
≤ λmax

(
E[Ψ̊i,nΨ̊>i,n|Si = s]

)
≤ C.

(ii) For a = 0, 1, there exist hn × 1 vectors θNPa,s and βNPa,s such that for

RY (a, s, x) := E
[
Yi(Di(a))|Si = s,Xi = x

]
− Ψ̊>i,nθ

NP
a,s and

RD(a, s, x) := P
(
Di(a) = 1|Si = s,Xi = x

)
− λ(Ψ̊>i,nβ

NP
a,s ),
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we have supa=0,1,b∈{D,Y },s∈S,x∈Supp(X) |Rb(a, s, x)| = op(1),

sup
a=0,1,b∈{D,Y },s∈S,x∈Supp(X)

1

na(s)

∑
i∈Ia(s)

(
Rb(a, s,Xi)

)2
= Op

(
hn log n

n

)
, and

sup
a=0,1,b∈{D,Y },s∈S

E
[(
Rb(a, s,Xi)

)2 |Si = s
]

= O

(
hn log n

n

)
.

(iii) For a = 0, 1, there exists a constant c ∈ (0, 0.5) such that

c ≤ inf
a=0,1,s∈S,x∈Supp(X)

P
(
Di(a) = 1|Si = s,Xi = x

)
≤ sup

a=0,1,s∈S,x∈Supp(X)

P
(
Di(a) = 1|Si = s,Xi = x

)
≤ 1− c.

(iv) Suppose that E[Ψ̊2
i,n,k|Si = s] ≤ C for some constant C > 0, where Ψ̊i,n,k denotes

the kth element of Ψ̊i,n. maxi∈[n] ||Ψ̊i,n||2 ≤ ζ(hn) a.s., where ζ(·) is a deterministic

increasing function satisfying ζ2(hn)hn log n = o(n). Also h2
n log2 n = o(n).

Assumption S.C.1 is standard for linear and logistic sieve regressions. We refer to Hirano,

Imbens, and Ridder (2003) and Chen (2007) for more discussions. The quantity ζ(hn) in

Assumption S.C.1(iv) depends on the choice of basis functions. For example, ζ(hn) = O(h
1/2
n )

for splines and ζ(hn) = O(hn) for power series.

Theorem S.C.1. Suppose Assumptions 1 and S.C.1 hold. Then {µ̂b(a, s,Xi)}b=D,Y,a=0,1,s∈S

defined in (S.C.1) with µb(a, s,X) = µb(a, s,X) satisfy Assumption 3. All the results in

Theorem 3.1(i)-(ii) hold for τ̂NP . In addition, τ̂NP achieves the SEB.

The nonlinear (logistic) and nonparametric adjustments are numerically identical if the

same set of regressors are used. Theorem S.C.1 then shows that the nonlinear (logistic)

adjustment with technical regressors performs well because it can closely approximate the

correct specification. Under the asymptotic framework that the dimension of the regressors

diverges to infinity and the approximation error converges to zero, the nonlinear (logistic)

adjustment can be viewed as the nonparametric adjustment, which achieves the SEB. In

fact, if we estimate both µY (a, s,X) and µD(a, s,X) by linear sieve regressions, under similar

conditions to Assumption S.C.1, we can show that such an adjusted estimator also achieves

the SEB. So does Ansel et al.’s (2018) S estimator when their Xi is replaced by sieve bases of

Xi because it is asymptotically equivalent to our estimator L with optimal linear adjustment.
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S.D Implementation Details for Sieve and Lasso Re-

gressions

Sieve regressions. We provide more details on the sieve basis. Recall Ψ̊i,n ≡ (b1,n(x), · · · , bhn,n(x))>,

where {bh,n(·)}h∈[hn] are hn basis functions of a linear sieve space, denoted as B. Given that all

the elements of vector X are continuously distributed, the sieve space B can be constructed

as follows.

1. For each element X(l) of X, l = 1, · · · , dx, where dx denotes the dimension of vector

X, let Bl be the univariate sieve space of dimension Jn. One example of Bl is the linear

span of the Jn dimensional polynomials given by

Bl =

{ Jn∑
k=0

αkx
k, x ∈ Supp(X(l)), αk ∈ R

}
;

Another example is the linear span of r-order splines with Jn nodes given by

Bl =

{ r−1∑
k=0

αkx
k +

Jn∑
j=1

bj[max(x− tj, 0)]r−1, x ∈ Supp(X(l)), αk, bj ∈ R
}
,

where the grid −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partitions Supp(X(l)) into

Jn + 1 subsets Ij = [tj, tj+1)∩ Supp(X(l)), j = 1, · · · , Jn− 1, I0 = (t0, t1)∩ Supp(X(l)),

and IJn = (tJn , tJn+1) ∩ Supp(X(l)).

2. Let B be the tensor product of {Bl}dxl=1, which is defined as a linear space spanned by

the functions
∏dx

l=1 gl, where gl ∈ Bl. The dimension of B is then K ≡ dxJn if Bl is

spanned by Jn dimensional polynomials.

We refer interested readers to Hirano et al. (2003) and Chen (2007) for more details

about the implementation of sieve estimation. Given the sieve basis, we can compute the

{µ̂b(a, s,Xi)}a=0,1,b=D,Y,s∈S following (S.C.1).

Lasso regressions. We follow the estimation procedure and the choice of tuning parameter

proposed by Belloni, Chernozhukov, Fernández-Val, and Hansen (2017). We provide details

below for completeness. Recall %n,a(s) = c
√
na(s)F

−1
N (1− 1/(pn log(na(s)))). We set c = 1.1

following Belloni et al. (2017). We then implement the following algorithm to estimate θ̂Ra,s

and β̂Ra,s:
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(i) Let σ̂
Y,(0)
h = 1

na(s)

∑
i∈Ia(s)(Yi − Ȳa,s)2Ψ̊2

i,n,h and σ̂
D,(0)
h = 1

na(s)

∑
i∈Ia(s)(Di − D̄a,s)

2Ψ̊2
i,n,h

for h ∈ [pn], where Ȳa,s = 1
na(s)

∑
i∈Ia(s) Yi and D̄a,s = 1

na(s)

∑
i∈Ia(s) Di. Estimate

θ̂R,0a,s = arg min
t

−1

na(s)

∑
i∈Ia(s)

(
Yi − Ψ̊>i,nt

)2

+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
Y,(0)
h |th|,

β̂R,0a,s = arg min
b

−1

na(s)

∑
i∈Ia(s)

[
Di log(λ(Ψ̊>i,nb)) + (1−Di) log(1− λ(Ψ̊>i,nb))

]
+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
D,(0)
h |bh|.

(ii) For k = 1, · · · , K, obtain σ̂
Y,(k)
h =

√
1
n

∑
i∈[n](Ψ̊i,n,hε̂

Y,(k)
i )2, where ε̂

Y,(k)
i = Yi−Ψ̊>i,nθ̂

R,k−1
a,s

and σ̂
D,(k)
h =

√
1
n

∑
i∈[n](Ψ̊i,n,hε̂

D,(k)
i )2, where ε̂

D,(k)
i = Di − λ(Ψ̊>i,nβ̂

R,k−1
a,s ). Estimate

θ̂R,ka,s = arg min
t

−1

na(s)

∑
i∈Ia(s)

(
Yi − Ψ̊>i,nt

)2

+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
Y,(k−1)
h |th|,

β̂R,ka,s = arg min
b

−1

na(s)

∑
i∈Ia(s)

[
Di log(λ(Ψ̊>i,nb)) + (1−Di) log(1− λ(Ψ̊>i,nb))

]
+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
D,(k−1)
h |bh|.

(iii) Let θ̂Ra,s = θ̂R,Ka,s and β̂Ra,s = β̂R,Ka,s .

S.E Regression Adjustment under Full Compliance

In this section, we briefly discuss the regression adjustment under full compliance. We aim to

construct consistent and efficient estimators for the average treatment effect (ATE). Under

full compliance, we have D(a) = a for a = 0, 1 so that D = A. The estimator µ̂D(a, s, x) = a

is correctly specified. Then, our proposed estimator of ATE is

τ̂ATE :=
1

n

∑
i∈[n]

[
Ai(Yi − µ̂Y (1, Si, Xi))

π̂(Si)
− (1− Ai)(Yi − µ̂Y (0, Si, Xi))

1− π̂(Si)
+ µ̂Y (1, Si, Xi)− µ̂Y (0, Si, Xi)

]
,

(S.E.1)
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where µ̂Y (a, s, x) is an estimator of the working model µY (a, s, x).

The optimal linear adjustment is µ̂Y (a, s,Xi) = Ψ>i,sθ̂
L
a,s, where

Ψ̇i,a,s := Ψi,s −
1

na(s)

∑
i∈Ia(s)

Ψi,s

θ̂La,s :=

(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sΨ̇
>
i,a,s

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̇i,a,sYi

)
.

We can show that such an adjustment achieves the minimal variance of the ATE estimator

that is adjusted by linear functions of Ψi,s.

Let Ψ̊i,n contains sieve bases of Xi. Then, the nonparametric adjustment can be written

as µ̂Y (a, s,Xi) = Ψ̊>i,nθ̂
NP
a,s , where

θ̂NPa,s =

(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nΨ̊>i,n

)−1(
1

na(s)

∑
i∈Ia(s)

Ψ̊i,nYi

)
.

Last, suppose Ψ̊i,n contains high-dimensional regressors of Xi. Then, the regularized

adjustment can be written as µ̂Y (a, s,Xi) = Ψ̊>i,nθ̂
R
a,s, where

θ̂Ra,s = arg min
t

−1

na(s)

∑
i∈Ia(s)

(
Yi − Ψ̊>i,nt

)2
+
%n,a(s)

na(s)
||Ω̂Y t||1,

{%n,a(s)}a=0,1,s∈S are tuning parameters, Ω̂Y = diag(ω̂Y1 , · · · , ω̂Ypn) is a diagonal matrix of

data-dependent penalty loadings as defined in Section S.D. Under similar conditions as in

Assumptions S.C.1 and 8, we can show that the ATE estimator with both the nonparametric

and regularized adjustments achieves the semiparametric efficiency bound.

S.F Proof of Theorem 2.1

We define σ̂2
TSLS,naive as

σ̂2
TSLS,naive = e>1 [S>Z̄,X̄S

−1
Z̄,Z̄

SZ̄,X̄ ]−1

S>Z̄,X̄S−1
Z̄,Z̄

 1

n

n∑
i=1

(Z̄iZ̄
>
i ε̂

2
i )

S−1
Z̄,Z̄

SZ̄,X̄

 [S>Z̄,X̄S
−1
Z̄,Z̄

SZ̄,X̄ ]−1e1,

9



where X̄i = (Di, {1{Si = s}}s∈S , X>i )> Z̄i = (Ai, {1{Si = s}}s∈S , X>i )>, SZ̄,Z̄ = 1
n

∑
i∈[n] Z̄iZ̄

>
i ,

SZ̄,X̄ = 1
n

∑
i∈[n] Z̄iX̄

>
i , e1 is a vector with its first element being one and the rest being zero,

ε̂i = Yi − τ̂TSLSDi −
∑

s∈S α̂s,TSLS1{Si = s} −X>i δ̂TSLS, and (τ̂TSLS, α̂s,TSLS, δ̂TSLS) are the

usual TSLS estimators.

Next, we define σ2
TSLS and σ2

TSLS,naive. Let Xi = (X>i , {1{Si = s}}s∈S)>,

σ2
TSLS =

σ2
TSLS,0 + σ2

TSLS,1 + σ2
TSLS,2 + σ2

TSLS,3

(E(Di(1)−Di(0)))2
,

σ2
TSLS,1 =

E
[
Yi(Di(1))−Di(1)τ − X>i λ∗ − E[Yi(Di(1))−Di(1)τ − X>i λ∗|Si]

]2
π

σ2
TSLS,0 =

E
[
Yi(Di(0))−Di(0)τ − X>i λ∗ − E[Yi(Di(0))−Di(0)τ − X>i λ∗|Si]

]2
1− π

,

σ2
TSLS,2 = E

[
E
[
Y (D(1))− Y (D(0))− (D(1)−D(0))τ |Si

]]2

,

σ2
TSLS,3 = E

{
γ(Si)

(
E
[
Yi(Di(1))−Di(1)τ − X>i λ∗

π
+
Yi(Di(0))−Di(0)τ − X>i λ∗

1− π

∣∣∣∣Si])2
}
,

λ∗ =
(
EXiX>i

)−1

EXi

[
π(Yi(Di(1))−Di(1)τ) + (1− π)(Yi(Di(0))−Di(0)τ)

]
.

Furthermore, define

σ2
TSLS,naive =

σ2
TSLS,0 + σ2

TSLS,1 + σ2
TSLS,2 + σ̃2

TSLS,3

(E(Di(1)−Di(0)))2
, where

σ̃2
TSLS,3 = E

{
π(1− π)

(
E
[
Yi(Di(1))−Di(1)τ − X>i λ∗

π
+
Yi(Di(0))−Di(0)τ − X>i λ∗

1− π

∣∣∣∣Si])2
}
.

By definition, σ2
TSLS ≤ σ2

TSLS,naive. The inequality is strict if γ(s) < π(1− π).

Define Ãi as the residual from the regression of Ai on Xi and {1{Si = s}}s∈S . Then, we

have

τ̂TSLS =

∑
i∈[n] ÃiYi∑
i∈[n] ÃiDi

=

∑
i∈[n]

(
Ai − π(Si)

)
Yi +

∑
i∈[n] RiYi∑

i∈[n]

(
Ai − π(Si)

)
Di +

∑
i∈[n] RiDi

,

where Ri = Ãi − (Ai − π(Si)). We first suppose that

1

n

∑
i∈[n]

RiYi = op(1) and
1

n

∑
i∈[n]

RiDi = op(1). (S.F.1)
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In addition, we note that

1

n

∑
i∈[n]

(Ai − π(Si))Yi =
1

n

∑
i∈[n]

Ai(1− π(Si))Yi(Di(1))− 1

n

∑
i∈[n]

(1− Ai)π(Si)Yi(Di(0)).

For the first term on the RHS of the above display, we have

1

n

∑
i∈[n]

Ai(1− π(Si))Yi(Di(1))

=
1

n

∑
i∈[n]

Ai(1− π(Si))(Yi(Di(1))− E(Yi(Di(1))|Si)) +
1

n

∑
i∈[n]

Ai(1− π(Si))E(Yi(Di(1))|Si)

= op(1) +
1

n

∑
i∈[n]

π(Si)(1− π(Si))E(Yi(Di(1))|Si) +
1

n

∑
s∈S

Bn(s)(1− π(s))E(Yi(Di(1))|Si = s)

= Eπ(Si)(1− π(Si))E(Yi(Di(1))|Si) + op(1), (S.F.2)

where the second equality is by conditional Chebyshev’s inequality using the facts that

E
[

1

n

∑
i∈[n]

Ai(1− π(Si))(Yi(Di(1))− E(Yi(Di(1))|Si))
∣∣∣∣{Ai, Si}i∈[n]

]
= 0

E
[(

1

n

∑
i∈[n]

Ai(1− π(Si))(Yi(Di(1))− E(Yi(Di(1))|Si))
)2 ∣∣∣∣{Ai, Si}i∈[n]

]

≤
∑
s∈S

n1(s)(1− π(s))2E(Y 2(D(1))|Si = s)

n2
= op(1),

and the third equality is by Assumption 1(iv) and the usual LLN. For the same reason, we

have

1

n

∑
i∈[n]

(1− Ai)π(Si)Yi(Di(0))
p−→ Eπ(Si)(1− π(Si))E(Yi(Di(0))|Si),

1

n

∑
i∈[n]

Ai(1− π(Si))Di(1)
p−→ Eπ(Si)(1− π(Si))E(Di(1)|Si),

1

n

∑
i∈[n]

(1− Ai)π(Si)Di(0)
p−→ Eπ(Si)(1− π(Si))EDi(0)|Si),

11



and

τ̂TSLS
p−→ Eπ(Si)(1− π(Si))(E(Yi(Di(1))|Si)− E(Yi(Di(0))|Si))

Eπ(Si)(1− π(Si))(E(Di(1)|Si)− E(Di(0)|Si))
.

Therefore, it is only left to show (S.F.1). Let Xi = (X>i , {1{Si = s}}s∈S)>, θ̂ be the OLS

coefficient of regressing Ai on Xi, and θ = (0>dx , {π(s)}s∈S)>, where dx is the dimension of

Xi. Then, we have Ri = −X>i (θ̂ − θ). In order to show (S.F.1), it suffices to show θ̂
p−→ θ,

or equivalently, 1
n

∑
i∈[n] Xi(Ai − π(Si))

p−→ 0. We note that

1

n

∑
i∈[n]

Xi(Ai − π(Si)) =
1

n

∑
i∈[n]

(Xi − E(Xi|Si))(Ai − π(Si)) +
1

n

∑
i∈[n]

E(Xi|Si)(Ai − π(Si))

=
1

n

∑
i∈[n]

(Xi − E(Xi|Si))Ai(1− π(Si))−
1

n

∑
i∈[n]

(Xi − E(Xi|Si))(1− Ai)π(Si) +
1

n

∑
s∈S

E(Xi|Si = s)Bn(s)

= op(1), (S.F.3)

where the last equality holds following the similar argument in (S.F.2). This concludes the

proof of the first statement.

For the second statement, let Xi = (X>i , {1{Si = s}}s∈S)>,

θ̂ =

(
1

n

∑
i∈[n]

XiX>i
)−1(

1

n

∑
i∈[n]

XiAi

)
,

Ãi = Ai − X>i θ̂, and θ = (0>dx , π, · · · , π)>. Then, we have

√
n(τ̂TSLS − τ) =

1√
n

∑
i∈[n] Ãi(Yi −Diτ)

1
n

∑
i∈[n] ÃiDi

.

By the same argument in the proof of the first statement of Theorem 2.1, we have

1

n

∑
i∈[n]

ÃiDi
p−→ π(1− π)E(D(1)−D(0)).

Next, we turn to the numerator. We have

1√
n

∑
i∈[n]

Ãi(Yi −Diτ) =
1√
n

∑
i∈[n]

(Ai − X>i θ − X>i (θ̂ − θ))(Yi −Diτ)

12



=
1√
n

∑
i∈[n]

(Ai − π)(Yi −Diτ)− 1

n

∑
i∈[n]

X>i (Yi −Diτ)

(
1

n

∑
i∈[n]

XiX>i
)−1(

1√
n

∑
i∈[n]

Xi(Ai − π)

)
.

where the second equality uses the facts that X>i θ = π and

θ̂ − θ =

(
1

n

∑
i∈[n]

XiX>i
)−1(

1

n

∑
i∈[n]

Xi(Ai − X>i θ)
)

=

(
1

n

∑
i∈[n]

XiX>i
)−1(

1

n

∑
i∈[n]

Xi(Ai − π)

)
.

We first consider the joint convergence of 1√
n

∑
i∈[n](Ai−π)(Yi−Diτ) and 1√

n

∑
i∈[n] Xi(Ai−

π). Let λ1 be a scalar and λ2 ∈ <dx . Then, it suffices to consider the weak conver-

gence of 1√
n

∑
i∈[n](Ai − π)(λ1(Yi − Diτ) + λ>2 Xi). Let $i = λ1(Yi − Diτ) + λ>2 Xi and

$i(a) = λ1(Yi(Di(a))−Di(a)τ) + λ>2 Xi. Note that $i = Ai$i(1) + (1−Ai)$i(0). We have

1√
n

∑
i∈[n]

(Ai − π)$i =
1√
n

∑
i∈[n]

[
Ai(1− π)$i(1)− (1− Ai)π$i(0)

]
=

1√
n

∑
i∈[n]

[
Ai(1− π)($i(1)− E($i(1)|Si))− (1− Ai)π($i(0)− E($i(0)|Si))

]
+

1√
n

∑
i∈[n]

[
Ai(1− π)E($i(1)|Si)− (1− Ai)πE($i(0)|Si)

]
=

1√
n

∑
i∈[n]

[
Ai(1− π)($i(1)− E($i(1)|Si))− (1− Ai)π($i(0)− E($i(0)|Si))

]
+

1√
n

∑
s∈S

Bn(s)
[
(1− π)E($i(1)|Si = s) + πE($i(0)|Si = s)

]
+
π(1− π)√

n

∑
i∈[n]

E($i(1)−$i(0)|Si)

=
1√
n

∑
i∈[n]

[
Ai(1− π)($i(1)− E($i(1)|Si))− (1− Ai)π($i(0)− E($i(0)|Si))

]
+

1√
n

∑
s∈S

Bn(s)
[
(1− π)E($i(1)|Si = s) + πE($i(0)|Si = s)

]
+
π(1− π)√

n

∑
i∈[n]

(
E($i(1)−$i(0)|Si)− E($i(1)−$i(0))

)
 N (0,Σ2), (S.F.4)

where

Σ2 = (1− π)π
[
(1− π)E

[
$i(1)− E($i(1)|Si)

]2
+ πE

[
$i(0)− E($i(0)|Si)

]2]

13



+ E
[
γ(Si)

(
E
[
(1− π)$i(1) + π$i(0)|Si

])2
]

+ π2(1− π)2E
(
E
[
$i(1)−$i(0)|Si

])2

,

the last convergence in distribution is by a similar argument in the proof of Bugni, Canay,

and Shaikh (2018, Lemma B.2) and the fact that

E($i(1)−$i(0)) = λ1E(Yi(Di(1))− Yi(Di(1))− (Di(1)−Di(0))τ) = 0.

Thus (S.F.4) implies both 1√
n

∑
i∈[n](Ai − π)(Yi −Diτ) and 1√

n

∑
i∈[n] Xi(Ai − π) are Op(1).

In addition, let λ̂ =
(

1
n

∑
i∈[n] XiX>i

)−1
1
n

∑
i∈[n] Xi(Yi −Diτ). We can show

λ̂
p−→ λ∗ :=

(
EXiX>i

)−1

EXi

[
π(Yi(Di(1))−Di(1)τ) + (1− π)(Yi(Di(0))−Di(0)τ)

]
.

Therefore, by letting λ1 = 1 and λ2 = λ∗, we have

√
n(τ̂TSLS − τ) N (0, σ2

TSLS),

where

σ2
TSLS =

σ2
TSLS,0 + σ2

TSLS,1 + σ2
TSLS,2 + σ2

TSLS,3

(E(Di(1)−Di(0)))2
,

σ2
TSLS,0 =

E
[
Yi(Di(0))−Di(0)τ − X>i λ∗ − E[Yi(Di(0))−Di(0)τ − X>i λ∗|Si]

]2
1− π

,

σ2
TSLS,1 =

E
[
Yi(Di(1))−Di(1)τ − X>i λ∗ − E[Yi(Di(1))−Di(1)τ − X>i λ∗|Si]

]2
π

,

σ2
TSLS,2 = E

[
E
[
Y (D(1))− Y (D(0))− (D(1)−D(0))τ |Si

]]2

,

σ2
TSLS,3 = E

{
γ(Si)

(
E
[
Yi(Di(1))−Di(1)τ − X>i λ∗

π
+
Yi(Di(0))−Di(0)τ − X>i λ∗

1− π

∣∣∣∣Si])2
}
.

To see the second result, we note that X̄i = (Di,X>i )> and Z̄i = (Ai,X>i )>. Denote

Z̆i = (Ãi,X>i )>. Then, we have

e>1 [SX̄,Z̄S
−1
Z̄,Z̄

SZ̄,X̄ ]−1

= [SX̄,Z̆S
−1

Z̆,Z̆
SZ̆,X̄ ]−1
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= e>1

{∑i∈[n] DiÃi/n
∑

i∈[n] DiX>i /n
0

∑
i∈[n] XiX>i /n

∑i∈[n] Ã
2
i /n 0

0
∑

i∈[n] XiX>i /n

−1

×

∑i∈[n] DiÃi/n 0∑
i∈[n] DiXi/n

∑
i∈[n] XiX>i /n

}−1

= e>1

 (
∑

i∈[n] DiÃi/n)2

(
∑

i∈[n] Ã
2
i /n)

+
∑

i∈[n] DiX>i /n
[∑

i∈[n] XiX>i /n
]−1∑

i∈[n] DiXi/n
∑

i∈[n] DiX>i /n∑
i∈[n] DiXi/n

∑
i∈[n] XiX>i /n

−1

p−→ [π(1− π)]−1(E(D(1)−D(0)))−2
(

1 −γ>D
)
.

and

SX̄,Z̄SZ̄,Z̄Z̄i = SX̄,Z̆SZ̆,Z̆Z̆i

=

∑i∈[n] DiÃi/n
∑

i∈[n] DiX>i /n
0

∑
i∈[n] XiX>i /n

∑i∈[n] Ã
2
i /n 0

0
∑

i∈[n] XiX>i /n

−1(
Ãi

Xi

)

=

(
∑

i∈[n] DiÃi/n)(
∑

i∈[n] Ã
2
i /n)−1 (

∑
i∈[n] DiX>i /n)(

∑
i∈[n] XiX>i /n)−1

0 I

(Ãi
Xi

)
,

where γD = (EXiX>i )−1E(Xi(πDi(1) + (1− π)Di(0))). Further note that(
∑

i∈[n] DiÃi/n)(
∑

i∈[n] Ã
2
i /n)−1 (

∑
i∈[n] DiX>i /n)(

∑
i∈[n] XiX>i /n)−1

0 I

 p−→

(
E(D(1)−D(0)) γ>D

0 I

)

and

λ̂TSLS ≡


α̂1,TSLS

...

α̂S,TSLS

θ̂TSLS

 = (
∑
i∈[n]

XiX>i /n)−1(
∑
i∈[n]

Xi(Yi −Diτ̂TSLS)/n)

= λ̂+ (
∑
i∈[n]

XiX>i /n)−1(
∑
i∈[n]

XiDi/n)(τ − τ̂TSLS)
p−→ λ∗.
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Then, we have

êi = ei −Di(τ̂TSLS − τ)− X>i (λ̂TSLS − λ∗),

where ei = Yi−Diτ −X>i λ∗. In addition, as shown above, we have Ãi = Ai− π−X>i (θ̂− θ)
and θ̂

p−→ θ. This implies,

1

n

∑
i∈[n]

ê2
i

(
Ã2
i ÃiX>i

ÃiXi XiX>i

)

=
1

n

∑
i∈[n]

e2
i

(
(Ai − π)2 (Ai − π)X>i

(Ai − π)Xi XiX>i

)
+ oP (1)

=
1

n

∑
i∈[n]

[
Ai(Yi(Di(1))−Di(1)τ − X>i λ∗)2 + (1− Ai)(Yi(Di(0))−Di(0)τ − X>i λ∗)2

]

×

(
(Ai − π)2 (Ai − π)X>i

(Ai − π)Xi XiX>i

)
+ oP (1)

=
1

n

∑
i∈[n]

Ai

(
(1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i

(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)

+
1

n

∑
i∈[n]

(1− Ai)

(
π2(Yi(Di(0))−Di(0)τ − X>i λ∗)2 −π(Yi(Di(0))−Di(0)τ − X>i λ∗)2X>i
−π(Yi(Di(0))−Di(0)τ − X>i λ∗)2Xi (Yi(Di(0))−Di(0)τ − X>i λ∗)2XiX>i

)
+ oP (1).

For the first term on the RHS of the above display, we have

1

n

∑
i∈[n]

Ai

(
(1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i

(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)

=
1

n

∑
i∈[n]

Ai

{(
(1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i

(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)

− E

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si
}

+
1

n

∑
i∈[n]

(Ai − π)E

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si


+
1

n

∑
i∈[n]

πE

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si
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p−→ πE

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)
≡ Ω1.

To see the convergence in probability in the above display, we note that

Ai

{(
(1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i

(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)

− E

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si
}

is independent and conditionally mean zero given (A(n), S(n)). Therefore, by the conditional

Chebyshev’s inequality, we have

1

n

∑
i∈[n]

Ai

{(
(1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i

(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)

− E

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si
}

= oP (1).

Also, by Assumption 2, we have

1

n

∑
i∈[n]

(Ai − π)E

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si


= oP (1).

Last, by the usual Law of Large numbers for i.i.d. data, we have

1

n

∑
i∈[n]

πE

( (1− π)2(Yi(Di(1))−Di(1)τ − X>i λ∗)2 (1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2X>i
(1− π)(Yi(Di(1))−Di(1)τ − X>i λ∗)2Xi (Yi(Di(1))−Di(1)τ − X>i λ∗)2XiX>i

)∣∣∣∣Si


p−→ Ω1.
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Similarly, we have

1

n

∑
i∈[n]

(1− Ai)

(
π2(Yi(Di(0))−Di(0)τ − X>i λ∗)2 −π(Yi(Di(0))−Di(0)τ − X>i λ∗)2X>i
−π(Yi(Di(0))−Di(0)τ − X>i λ∗)2Xi (Yi(Di(0))−Di(0)τ − X>i λ∗)2XiX>i

)

p−→ (1− π)E

( π2(Yi(Di(0))−Di(0)τ − X>i λ∗)2 −π(Yi(Di(0))−Di(0)τ − X>i λ∗)2X>i
−π(Yi(Di(0))−Di(0)τ − X>i λ∗)2Xi (Yi(Di(0))−Di(0)τ − X>i λ∗)2XiX>i

)
≡ Ω0.

Consequently, we have

σ̂2
TSLS,naive

p−→

(
1 −γ>D

)(E(D(1)−D(0)) γ>D
0 I

)
(Ω1 + Ω0)

(
E(D(1)−D(0)) γ>D

0 I

)>(
1

−γD

)
[π(1− π)]2[E(D(1)−D(0))]4

=
π−1E(Yi(Di(1))−Di(1)τ − X>i λ∗)2 + (1− π)−1E(Yi(Di(1))−Di(1)τ − X>i λ∗)2

[E(D(1)−D(0))]2

=
σ2
TSLS,0 + σ2

TSLS,1 + σ2
TSLS,2 + σ̃2

TSLS,3

(E(Di(1)−Di(0)))2
.

For the last result, by the proof Theorem 3.1 with µb(a, s, x) = 0 for a = 0, 1 and b = D, Y

and π(s) = π, we have

σ2
NA =

∑
s∈S

p(s)
π
V ar(Y (D(1))− τD(1)|S = s) +

∑
s∈S

p(s)
1−πV ar(Y (D(0))− τD(0)|S = s)

P(D(1) > D(0))2

+
V ar(E[Wi − Zi|Si]− τ

(
E[Di(1)−Di(0)|Si]

)
)

P(D(1) > D(0))2

=
E 1
π
V ar(Y (D(1))− τD(1)|S) + 1

1−πV ar(Y (D(0))− τD(0)|S)

P(D(1) > D(0))2
+

σ2
TSLS,2

P(D(1) > D(0))2
.

Then, we have σ2
NA < σ2

TSLS if and only if

E
[

1

π
V ar(Y (D(1))− τD(1)|S) +

1

1− π
V ar(Y (D(0))− τD(0)|S)

]
< σ2

TSLS,0+σ2
TSLS,1+σ2

TSLS,3,

which is equivalent to

2

[
Ecov(Yi(Di(1))−Di(1)τ,X>i λ∗|S)

π
+

Ecov(Yi(Di(0))−Di(0)τ,X>i λ∗|S)

1− π

]
≤ EV ar(X>i λ∗|S)

π(1− π)
+ σ2

TSLS,3.
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S.G Proof of Theorem 3.1

Let

G := E
[(
Y (1)− Y (0)

) (
D(1)−D(0)

)]
,

H := E
[
D(1)−D(0)

]
,

Ĝ :=
1

n

∑
i∈[n]

[
Ai(Yi − µ̂Y (1, Si, Xi))

π̂(Si)
− (1− Ai)(Yi − µ̂Y (0, Si, Xi))

1− π̂(Si)
+ µ̂Y (1, Si, Xi)− µ̂Y (0, Si, Xi)

]
,

Ĥ :=
1

n

∑
i∈[n]

[
Ai(Di − µ̂D(1, Si, Xi))

π̂(Si)
− (1− Ai)(Di − µ̂D(0, Si, Xi))

1− π̂(Si)
+ µ̂D(1, Si, Xi)− µ̂D(0, Si, Xi)

]
.

Then, we have

√
n(τ̂ − τ) =

√
n

(
Ĝ

Ĥ
− G

H

)
=

1

Ĥ

√
n(Ĝ−G)− G

ĤH

√
n(Ĥ −H)

=
1

Ĥ

[√
n(Ĝ−G)− τ

√
n(Ĥ −H)

]
. (S.G.1)

Next, we divide the proof into three steps. In the first step, we obtain the linear expansion of
√
n(Ĝ−G). Based on the same argument, we can obtain the linear expansion of

√
n(Ĥ−H).

In the second step, we obtain the linear expansion of
√
n(τ̂−τ) and then prove the asymptotic

normality. In the third step, we show the consistency of σ̂. The second result in the Theorem

is obvious given the semiparametric efficiency bound derived in Theorem 4.1.

Step 1. We have

√
n(Ĝ−G) =

1√
n

∑
i∈[n]

[
Ai(Yi − µ̂Y (1, Si, Xi))

π̂(Si)
− (1− Ai)(Yi − µ̂Y (0, Si, Xi))

1− π̂(Si)

+ µ̂Y (1, Si, Xi)− µ̂Y (0, Si, Xi)

]
−
√
nG

=
1√
n

n∑
i=1

[
µ̂Y (1, Si, Xi)−

Aiµ̂
Y (1, Si, Xi)

π̂(Si)

]
+

1√
n

n∑
i=1

[
(1− Ai)µ̂Y (0, Si, Xi)

1− π̂(Si)
− µ̂Y (0, Si, Xi)

]

19



+
1√
n

n∑
i=1

AiYi
π̂(Si)

− 1√
n

n∑
i=1

(1− Ai)Yi
1− π̂(Si)

−
√
nG

=: Rn,1 +Rn,2 +Rn,3,

where

Rn,1 :=
1√
n

n∑
i=1

[
µ̂Y (1, Si, Xi)−

Aiµ̂
Y (1, Si, Xi)

π̂(Si)

]
,

Rn,2 :=
1√
n

n∑
i=1

[
(1− Ai)µ̂Y (0, Si, Xi)

1− π̂(Si)
− µ̂Y (0, Si, Xi)

]
,

Rn,3 :=
1√
n

n∑
i=1

AiYi
π̂(Si)

− 1√
n

n∑
i=1

(1− Ai)Yi
1− π̂(Si)

−
√
nG.

Lemma S.Q.1 shows that

Rn,1 =
1√
n

n∑
i=1

(
1− 1

π(Si)

)
Aiµ̃

Y (1, Si, Xi) +
1√
n

n∑
i=1

(1− Ai)µ̃Y (1, Si, Xi) + op(1),

Rn,2 =
1√
n

n∑
i=1

(
1

1− π(Si)
− 1

)
(1− Ai)µ̃Y (0, Si, Xi)−

1√
n

n∑
i=1

Aiµ̃
Y (0, Si, Xi) + op(1),

Rn,3 =
1√
n

n∑
i=1

1

π(Si)
W̃iAi −

1√
n

n∑
i=1

1− Ai
1− π(Si)

Z̃i +
1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)
.

This implies

√
n(Ĝ−G) =

{
1√
n

n∑
i=1

[(
1− 1

π(Si)

)
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi) +

W̃i

π(Si)

]
Ai

+
1√
n

n∑
i=1

[(
1

1− π(Si)
− 1

)
µ̃Y (0, Si, Xi) + µ̃Y (1, Si, Xi)−

Z̃i
1− π(Si)

]
(1− Ai)

}

+

 1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)+ op(1). (S.G.2)

Similarly, we can show that

√
n(Ĥ −H) =

{
1√
n

n∑
i=1

[(
1− 1

π(Si)

)
µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi) +

D̃i(1)

π(Si)

]
Ai
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+
1√
n

n∑
i=1

[(
1

1− π(Si)
− 1

)
µ̃D(0, Si, Xi) + µ̃D(1, Si, Xi)−

D̃i(0)

1− π(Si)

]
(1− Ai)

}

+

 1√
n

n∑
i=1

(
E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]

)+ op(1), (S.G.3)

where D̃i(a) = Di(a)−E(Di(a)|Si) for a = 0, 1 and µ̃D(0, s,Xi) = µD(0, s,Xi)−E(µD(0, Si, Xi)|Si =

s).

Combining (S.G.1), (S.G.2), and (S.G.3), we obtain the linear expansion for τ̂ as

√
n(τ̂ − τ) =

1

Ĥ

[√
n(Ĝ−G)− τ

√
n(Ĥ −H)

]
=

1

Ĥ

 1√
n

n∑
i=1

Ξ1(Di, Si)Ai +
1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai) +
1√
n

n∑
i=1

Ξ2(Si)

+ op(1),

where Di = {Yi(1), Yi(0), Di(1), Di(0), Xi},

Ξ1(Di, Si) =

[(
1− 1

π(Si)

)
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi) +

W̃i

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi) +

D̃i(1)

π(Si)

]
,

Ξ0(Di, Si) =

[(
1

1− π(Si)
− 1

)
µ̃Y (0, Si, Xi) + µ̃Y (1, Si, Xi)−

Z̃i
1− π(Si)

]

− τ

[(
1

1− π(Si)
− 1

)
µ̃D(0, Si, Xi) + µ̃D(1, Si, Xi)−

D̃i(0)

1− π(Si)

]
,

Ξ2(Si) =
(
E[Wi − Zi|Si]− E[Wi − Zi]

)
− τ

[
E[Di(1)−Di(0)|Si]− E[Di(1)−Di(0)]

]
.

Step 2. Lemma S.Q.2 implies that

1√
n

n∑
i=1

Ξ1(Di, Si)Ai  N (0, σ2
1),

1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai) N (0, σ2
0), and

1√
n

n∑
i=1

Ξ2(Si) N (0, σ2
2),

21



and the three terms are asymptotically independent, where

σ2
1 = Eπ(Si)Ξ

2
1(Di, Si), σ2

0 = E(1− π(Si))Ξ
2
0(Di, Si), and σ2

2 = EΞ2
2(Si).

This further implies Ĥ
p−→ H and

√
n(τ̂ − τ) N

(
0,
σ2

1 + σ2
0 + σ2

2

H2

)
,

Step 3. We aim to show the consistency of σ̂2. First note that

1

n

n∑
i=1

ΞH,i = Ĥ
p−→ H = E(Di(1)−Di(0)).

In addition, Lemma S.Q.3 shows.

1

n

n∑
i=1

AiΞ̂
2
1(Di, Si)

p−→ σ2
1,

1

n

n∑
i=1

(1− Ai)Ξ̂2
0(Di, Si)

p−→ σ2
0, and

1

n

n∑
i=1

Ξ̂2
2(Di, Si)

p−→ σ2
2.

This implies σ̂2 p−→ σ2.

S.H Proof of Theorem 4.1

Without loss of generality, we assume Ai = φi({Si}i∈[n], U), where φi(·) is a deterministic

function and U is a random variable (vector) with density PU(·) and is independent of

everything else in the data. Further denote Yi(a) = {Yi(Di(a)), Di(a), Xi}. We consider

parametric submodels indexed by a generic parameter θ. The likelihoods of Si evaluated at

s and Yi(a) given Si = s evaluated at y are written as fS(s; θ) and fY(a)|S(y|s; θ) for a = 0, 1,

respectively. The density of U does not depend on θ. Let θn = θ∗+ h/
√
n, where θ∗ indexes

the true underlying DGP.

By Assumption 1, the joint likelihood of {Yi, Xi, Si, Ai}i∈[n] under θ can be written as

PU(u)Πi∈[n]

[
fS(si; θ)Πa=0,1fY(a)|S(ỹi(a)|si; θ)1{φi(s1,··· ,sn,u)=a}

]
where (xi, yi(di(a)), di(a), u, si) are the realizations (Xi, Yi(Di(a)), Di(a), U, Si) for i ∈ [n] and

ỹi(a) = {yi(di(a)), di(a), xi}. We make the following regularity assumptions with respect to

the submodel.
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Assumption S.H.1. (i) Suppose fS(s; θ) and fY(a)|S(y|s; θ) for a = 0, 1 are differentiable

in quadratic mean at θ∗ with score functions gs(Si) and ga(Yi(a)|Si) for a = 0, 1,

respectively, such that

ḟY(a)|S(y|s; θ) =
∂ log(fY(a)|S(y|s; θ))

∂θ
, ḟS(s; θ) =

∂ log(fS(s; θ))

∂θ
,

ḟY(a)|S(Yi(a)|Si; θ∗) = ga(Yi(a)|Si), and ḟS(Si; θ
∗) = gs(Si).

(ii) Suppose ḟY(a)|S(y|s; θ) and ḟS(s; θ) are continuous at θ∗ so that there exist a sequence

tn = o(1) and a function La(Yi(a), Si) such that

|ḟY(a)|S(Yi(a)|Si; θ∗ + h/
√
n)− ga(Yi(a)|Si)|+ |ḟS(Si; θ

∗ + h/
√
n)− gs(Si)| ≤ tnLa(Yi(a), Si)

and E|Yi(Di(a))La(Yi(a), Si)| <∞ for a = 0, 1.

(iii) Suppose there exists a constant C > 0 such that

max
s∈S

E
[∣∣Ξ1(Di, Si)g1(Yi(1)|Si)

∣∣+
∣∣Ξ0(Di, Si)g0(Yi(0)|Si)

∣∣∣∣∣Si = s
]
≤ C

max
s∈S

E
[

Ξ1(Di, Si)2 + Ξ0(Di, Si)2
∣∣Si = s

]
≤ C,

where Ξ1(Di, Si), Ξ0(Di, Si) and Ξ2(Si) are defined as Ξ1(Di, Si), Ξ0(Di, Si) and Ξ2(Si)

in (3.7)–(3.9), respectively, with the researcher-specified working model µb(a, s, x) equal

to the true specification µb(a, s, x) for all (a, b, s, x) ∈ {0, 1} × {D, Y } × SX .

We denote τ(θ) = Eθ(Yi(1)− Yi(0)|Di(1) > Di(0)), where Eθ(·) means the expectation is

taken with the parametric submodel indexed by θ. We further denote E(·) = Eθ∗(·), which

is the expectation with respect to the true DGP.

Proof of Theorem 4.1. Following the same argument in Armstrong (2022), in order

to show the semiparametric efficiency bound, we only need to show (1) local asymptotic

normality of the log likelihood ratio for the parametric submodel with tangent set of the

form

T =

 Ψ(Di, Si, Ai) = gs(Si) + Aig1(Yi(1)|Si) + (1− Ai)g0(Yi(0)|Si) :

E
[
g2
s(Si) +

∑
a=0,1 g

2
a(Yi(a)|Si)

]
<∞,Egs(Si) = 0,E(ga(Yi(a)|Si)|Si) = 0,

E(g1(Yi(1)|Si)|Xi, Si) = E(g0(Yi(0)|Si)|Xi, Si)

 .

(S.H.1)
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and (2)
√
n(τ(θ∗ + h/

√
n) − τ(θ∗)) = 〈Ψ̃,Ψ〉P̄h + o(1), where Ψ̃(Di, Si, Ai) is the efficient

score defined as

Ψ̃(Di, Si, Ai) =
[
Ξ2(Si) + AiΞ1(Di, Si) + (1− Ai)Ξ0(Di, Si)

]
/E[Di(1)−Di(0)] (S.H.2)

and 〈Ψ̃,Ψ〉P̄ = 1
n

∑
i∈[n] EΨ̃(Di, Si, Ai)Ψ(Di, Si, Ai) is the inner product w.r.t. measure P̄ :=

1
n

∑
i∈[n] Pi. We establish these two results in two steps.

Step 1. Denote θn = θ∗ + h/
√
n where θ∗ is fixed and Pn,h as the joint distribution of

{Yi, Xi, Si, Ai}i∈[n] under θn. The log likelihood ratio for θn against θ∗ is given by

`n,h =
∑
i∈[n]

˜̀
s(Si; θn) +

∑
a=0,1

∑
i∈[n]

1{Ai = a}˜̀Y(a)|S(Yi|Si; θn),

where Yi = (Yi, Di, Xi), ˜̀
s(Si; θn) = log

(
fS(Si;θn)
fS(Si;θ∗)

)
, and ˜̀Y(a)|S(Yi|Si; θn) = log

(
fY(a)|S(Yi|Si;θn)

fY(a)|S(Yi|Si;θ∗)

)
for a = 0, 1. Then, Armstrong (2022, Corollary 3.1) shows `n,h converges in distribution to

a N (−h′Ĩ∗h/2, h′Ĩ∗h) law under θ∗ where Ĩ∗ is the limit of

Eθ∗g2
s(Si) +

1

n

∑
i∈[n]

∑
a=0,1

1{Ai = a}Eθ∗
[
g2
a(Yi(a)|Si)|Si

]
.

and the score for this parametric submodel can be written as

Ψ(Di, Si, Ai) = gs(Si) + Aig1(Yi(1)|Si) + (1− Ai)g0(Yi(0)|Si). (S.H.3)

We note that by definition, we have

Egs(Si) = 0 and E(ga(Yi(a)|Si)|Si) = 0.

In addition, we have the equality that, for an arbitrary function h(·) of X such that Eh2(X) <

∞,

Eθ(h(X)|S) =

∫
x

h(x)fX|S(x|S; θ)dx

=

∫
x

h(x)

[∫
y(d(a)),d(a)

fY (D(a)),D(a)|X,S(y(d(a)), d(a)|x, S; θ)dy(d(a))dd(a)

]
fX|S(x|S; θ)dx

=

∫
y(d(a)),d(a),x

h(x)fY(a)|S(y(d(a)), d(a), x|S; θ)dy(d(a))dd(a)dx (S.H.4)

24



for a = 0, 1, where fY(a)|S(y(d(a)), d(a), x|s; θ) is the joint likelihood of (Y (D(a)), D(a), X)

given S for a = 0, 1. We note that, for a = 0, 1,

∂fY(a)|S(y(d(a)), d(a), x|S; θ∗)

∂θ
= fY(a)|S(y(d(a)), d(a), x|S; θ∗)ga(Y(a)|S).

Therefore, taking derivatives of θ in (S.H.4) and evaluating the derivatives at θ∗, we have

E
[
h(X)g1(Y(1)|S)|S

]
= E

[
h(X)g0(Y(0)|S)|S

]
,

which implies E
[
g1(Y(1)|S)− g0(Y(0)|S)|X,S

]
= 0. Therefore, the tangent set can be

written in (S.H.1).

Step 2. We have

τ(θ) =
Eθ(Yi(Di(1))− Yi(Di(0)))

Eθ(Di(1)−Di(0))
.

By the mean-value theorem, we have

τ(θ∗ + h/
√
n)− τ(θ∗) =

∂τ(θ)

∂θ

∣∣∣∣
θ=θ̃

h√
n

=
∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

h√
n

+

[
∂τ(θ)

∂θ

∣∣∣∣
θ=θ̃

− ∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

]
h√
n
.

Let G(θ) = Eθ
[
Y (D(1))− Y (D(0))

]
, H(θ) = Eθ

[
D(1)−D(0)

]
, G = G(θ∗), and H =

H(θ∗). Note that τ(θ) = G(θ)/H(θ) and τ = G/H. Then, we have

∂G(θ)

∂θ
= Eθ

[
Y (D(1))(ḟY(1)|S(Y(1)|S; θ) + ḟS(S; θ)

]
− Eθ

[
Y (D(0))(ḟY(0)|S(Y(0)|S; θ) + ḟS(S; θ))

]
∂H(θ)

∂θ
= Eθ

[
D(1)(ḟY(1)|S(Y(1)|S; θ) + ḟS(S; θ))

]
− Eθ

[
D(0)(ḟY(0)|S(Y(0)|S; θ) + ḟS(S; θ))

]
.

Therefore by Assumption S.H.1 we can find a constant L such that

∣∣∣∣∂τ(θ)

∂θ

∣∣∣∣
θ=θ̃

− ∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

∣∣∣∣ =

∣∣∣∣H(θ̃)∂G(θ̃)
∂θ
−G(θ̃)∂H(θ̃)

∂θ

H2(θ̃)
−
H(θ∗)∂G(θ∗)

∂θ
−G(θ∗)∂H(θ∗)

∂θ

H2(θ∗)

∣∣∣∣
≤ tnL.
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This implies

√
n(τ(θ∗ + h/

√
n)− τ(θ∗)) =

∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

h+ o(1). (S.H.5)

In addition, following the calculation by Frölich (2007), we have

∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

=

[
∂G(θ)
∂θ
− τ ∂H(θ)

∂θ

] ∣∣∣∣
θ=θ∗

H

=
E
[
(Y (D(1))− τD(1))(g1(Y(1)|S) + gs(S))

]
H

−
E
[
(Y (D(0))− τD(0))(g0(Y(0)|S) + gs(S))

]
H

,

where for notation simplicity, we write Eθ∗ as E. Let

Γ(X,S) =

[
π(S)(E(Z|X,S)− E(Z|S)) +

(
1− π(S)

)
(E(W |X,S)− E(W |S))

− τ
(
π(S)(E(D(0)|X,S)− E(D(0)|S)) +

(
1− π(S)

)
(E(D(1)|X,S)− E(D(1)|S))

)]
.

Then, we have

Y (D(1))− τD(1) = π(S)Ξ1(D, S) + E(W − τD(1)|S) + Γ(X,S),

Y (D(0))− τD(0) = −(1− π(S))Ξ0(D, S) + E(Z − τD(0)|S) + Γ(X,S).

This implies

E(Y (D(1))− τD(1))(g1(Y(1)|S) + gs(S))

= Eπ(S)Ξ1(D, S)g1(Y(1)|S) + EΓ(X,S)g1(Y(1)|S) + E(E(W − τD(1)|S)gs(S)),

E(Y (D(0))− τD(0))(g0(Y(0)|S) + gs(S))

= −E(1− π(S))Ξ0(D, S)g0(Y(0)|S) + EΓ(X,S)g0(Y(0)|S) + E(E(Z − τD(0)|S)gs(S)),

where we have used E[Ξa(D, S)|S] = 0, E[Γ(X,S)|S] = 0 and E[ga(Y(a)|S)|S] = 0 for

a = 0, 1. Then

∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

=
Eπ(S)Ξ1(D, S)g1(Y(1)|S)

H
+

E(1− π(S))Ξ0(D, S)g0(Y(0)|S)

H
+

Egs(S)Ξ2(S)

H
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+
EΓ(X,S)(g1(Y(1)|S)− g0(Y(0)|S))

H

=
Eπ(S)Ξ1(D, S)g1(Y(1)|S)

H
+

E(1− π(S))Ξ0(D, S)g0(Y(0)|S)

H
+

Egs(S)Ξ2(S)

H
.

(S.H.6)

where the last equality is due to (S.H.1).

On the other hand, we note that

〈Ψ̃,Ψ〉P̄ =
1

n

∑
i∈[n]

[
E
[
gs(Si)Ξ2(Si)

]
H

+
E
[
AiΞ1(Di, Si)g1(Yi(1)|Si)

]
H

+
E
[
(1− Ai)Ξ0(Di, Si)g0(Yi(0)|Si)

]
H

]

=
∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

+
1

n

∑
i∈[n]

[
E
[
(Ai − π(Si))Ξ1(Di, Si)g1(Yi(1)|Si)

]
H

−
E
[
(Ai − π(Si))Ξ0(Di, Si)g0(Yi(0)|Si)

]
H

]
.

In addition, by Assumption S.H.1, we have, for some constant C > 0, that∣∣∣∣∣∣ 1n
∑
i∈[n]

[
E(Ai − π(Si))Ξ1(Di, Si)g1(Yi(1)|Si)

H
− E(Ai − π(Si))Ξ0(Di, Si)g0(Yi(0)|Si)

H

]∣∣∣∣∣∣
≤ C

n

∑
s∈S

E|Bn(s)| = o(1),

where the inequality is by law of iterated expectation and Assumption S.H.1(iii) and the last

equality is due to E|Bn(s)|/n = o(1).1 This implies

〈Ψ̃,Ψ〉P̄ =
∂τ(θ)

∂θ

∣∣∣∣
θ=θ∗

+ o(1). (S.H.7)

Combining (S.H.5), (S.H.6) and (S.H.7), we obtained the desired result for Step 2. Last, it

is obvious from the previous calculation that

〈Ψ̃, Ψ̃〉P̄ → σ2.

1Since |Bn(s)/n| ≤ 1, {Bn(s)/n} is uniformly integrable. Then from Bn(s)/n = op(1), we have
E|Bn(s)|/n = o(1).
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S.I Proof of Theorem 5.1

The proof is divided into two steps. In the first step, we show Assumption 3(i). In the

second step, we establish Assumptions 3(ii) and 3(iii).

Step 1. Recall

∆Y (a, s,Xi) = µ̂Y (a, s,Xi)− µY (a, s,Xi) = ΛY
a,s(Xi, θ̂a,s)− ΛY

a,s(Xi, θa,s),

and {Xs
i }i∈[n] is generated independently from the distribution of Xi given Si = s, and so

is independent of {Ai, Si}i∈[n]. Let Ma,s(θ1, θ2) := E[ΛY
a,s(Xi, θ1) − ΛY

a,s(Xi, θ2)|Si = s] =

E[ΛY
a,s(X

s
i , θ1)− ΛY

a,s(X
s
i , θ2)]. We have

∣∣∣∣
∑

i∈I1(s) ∆Y (a, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆Y (a, s,Xi)

n0(s)

∣∣∣∣
≤
∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣+

∣∣∣∣
∑

i∈I0(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n0(s)

∣∣∣∣
= op(n

−1/2). (S.I.1)

To see the last equality, we note that, for any ε > 0, with probability approaching one

(w.p.a.1), we have

max
s∈S
||θ̂a,s − θa,s||2 ≤ ε.

Therefore, on the event An(ε) := {maxs∈S ||θ̂a,s − θa,s||2 ≤ ε,mins∈S n1(s) ≥ εn} we have

∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ∣∣∣∣{Ai, Si}i∈[n]

d
=

∣∣∣∣
∑N(s)+n1(s)

i=N(s)+1 [∆Y (a, s,Xs
i )−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ∣∣∣∣{Ai, Si}i∈[n] ≤ ||Pn1(s) − P||F
∣∣∣∣{Ai, Si}i∈[n],

where

F = {ΛY
a,s(X

s
i , θ1)− ΛY

a,s(X
s
i , θ2)−Ma,s(θ1, θ2) : ||θ1 − θ2||2 ≤ ε}.
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Therefore, for any δ > 0 we have

P
(∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ≥ δn−1/2

)
≤ P

(∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ≥ δn−1/2,An(ε)

)
+ P(Acn(ε))

≤ E
[
P
(∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ≥ δn−1/2,An(ε)

∣∣∣∣{Ai, Si}i∈[n]

)]
+ P(Acn(ε))

≤
∑
s∈S

E

P(||Pn1(s) − P||F ≥ δn−1/2

∣∣∣∣{Ai, Si}i∈[n]

)
1{n1(s) ≥ nε}

+ P(Acn(ε))

≤
∑
s∈S

E

{
n1/2E

[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε}

δ

}
+ P(Acn(ε)).

By Assumption 4, F is a VC-class with a fixed VC index and envelope Li such that

E(Lqi |{Ai, Si}i∈[n]) ≤ C <∞. This implies Emaxi∈[n1(s)] L
2
i ≤ Cn

2/q
1 (s). In addition,

sup
f∈F

Pf 2 ≤ EL2
i (θ1 − θ2)2 ≤ Cε2.

Invoke Chernozhukov, Chetverikov, and Kato (2014, Corollary 5.1) with A and ν being fixed

constants, and σ2, F , M being Cε2, L, max1≤i≤n1(s) Li, respectively, in our setting. We have

n1/2E
[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε}

≤ C

(√
n

n1(s)
ε2 log(1/ε) + n1/2n

1/q−1
1 (s) log(1/ε)

)
1{n1(s) ≥ nε}

≤ C(ε1/2 log1/2(1/ε) + n1/q−1/2ε1/q−1 log(1/ε)).

Therefore,

E

{
n1/2E

[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε}

δ

}
≤ CE

(
ε1/2 log1/2(1/ε) + n1/q−1/2ε1/q−1 log(1/ε)

)
/δ.

By letting n→∞ followed by ε→ 0, we have

lim
n→∞

P
(∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ ≥ δn−1/2

)
= 0,
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Therefore,

∣∣∣∣
∑

i∈I1(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n1(s)

∣∣∣∣ = op(n
−1/2).

For the same reason, we have

∣∣∣∣
∑

i∈I0(s)[∆
Y (a, s,Xi)−Ma,s(θ̂a,s, θa,s)]

n0(s)

∣∣∣∣ = op(n
−1/2),

and (S.I.1) holds.

Step 2. We have

1

n

n∑
i=1

∆Y,2(a, Si, Xi) =
1

n

n∑
i=1

∑
s∈S

1{Si = s}(ΛY
a,s(Xi, θ̂a,s)− ΛY

a,s(Xi, θa,s))
2

≤
(

1

n

n∑
i=1

L2
i

)
C max

s∈S
||θ̂a,s − θa,s||22 = op(1).

This verifies Assumption 3(ii). Assumption 3(iii) holds by Assumption 4(ii).

S.J Proof of Theorem 5.2

Let

νY (a, Si, Xi) = E(Yi(Di(a))|Si, Xi)− E(Yi(Di(a))|Si) and

νD(a, Si, Xi) = E(Di(a)|Si, Xi)− E(Di(a)|Si). (S.J.1)

Also recall that Wi = Yi(Di(1)), Zi = Yi(Di(0)), µY (a, Si, Xi) = E(Yi(Di(a))|Si, Xi). Then,

we have

Eπ(Si)Ξ
2
1(Di, Si) = E


(
Wi − µY (1, Si, Xi)− τ(Di(1)− µD(1, Si, Xi))

)2

π(Si)


+ E

{
π(Si)

[
νY (1, Si, Xi)− µ̃Y (1, Si, Xi)− τ(νD(1, Si, Xi)− µ̃D(1, Si, Xi))

π(Si)

+ µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi)− τ(µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi))

]2}
.
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Similarly, we have

E(1− π(Si))Ξ
2
0(Di, Si) = E


(
Zi − µY (0, Si, Xi)− τ(Di(0)− µD(0, Si, Xi))

)2

1− π(Si)


+ E

{
(1− π(Si))

[
νY (0, Si, Xi)− µ̃Y (0, Si, Xi)− τ(νD(0, Si, Xi)− µ̃D(0, Si, Xi))

1− π(Si)

−
(
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi)− τ(µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi))

)]2}
.

Last, we have

EΞ2
2(Si) = E(µY (1, Si, Xi)− µY (0, Si, Xi)− τ(µD(1, Si, Xi)− µD(0, Si, Xi)))

2

− E(νY (1, Si, Xi)− νY (0, Si, Xi)− τ(νD(1, Si, Xi)− νD(0, Si, Xi)))
2

Let

σ2
∗ = (P(Di(1) > Di(0)))−2

{
E
[(
Wi − µY (1, Si, Xi)− τ(Di(1)− µD(1, Si, Xi))

)2

π(Si)

]
+ E

[(
Zi − µY (0, Si, Xi)− τ [Di(0)− µD(0, Si, Xi)]

)2

1− π(Si)

]
+ E

(
µY (1, Si, Xi)− µY (0, Si, Xi)− τ [µD(1, Si, Xi)− µD(0, Si, Xi)]

)2
}
,

which does not depend on the working models µb(a, Si, Xi) for a = 0, 1 and b = D, Y . Then,

we have

σ2((ta,s, ba,s)a=0,1,s∈S) =
σ2
∗ + V ((ta,s, ba,s)a=0,1,s∈S)

P(Di(1) > Di(0))2
,

where σ2
∗ does not depend on (ta,s, ba,s)a=0,1,s∈S and

V ((ta,s, ba,s)a=0,1,s∈S) = E
(√

π(Si)

1− π(Si)
A0(Si, Xi) +

√
1− π(Si)

π(Si)
A1(Si, Xi)

)2

=
∑
s∈S

p(s)E
[(√

π(s)

1− π(s)
A0(s,Xi) +

√
1− π(s)

π(s)
A1(s,Xi)

)2 ∣∣∣∣Si = s

]

31



where for a = 0, 1,

Aa(s, x) = νY (a, s, x)− µ̃Y (a, s, x)− τ(νD(a, s, x)− µ̃D(a, s, x))

= (νY (a, s, x)− τνD(a, s, x))− Ψ̃>i,s(ta,s − τba,s),

and (µ̃Y (a, s, x), µ̃D(a, s, x)) and (νY (a, s, x), νD(a, s, x)) are defined in (3.5) and (S.J.1),

respectively. Specifically, we have

µ̃Y (a, s, x) = Ψ̃>i,sta,s, µ̃D(a, s, x) = Ψ̃>i,sba,s, and Ψ̃i,s = Ψi,s − E(Ψi,s|Si = s).

In order to minimize V ((ta,s, ba,s)a=0,1,s∈S), it suffices to minimize

E
[(√

π(s)

1− π(s)
A0(s,Xi) +

√
1− π(s)

π(s)
A1(s,Xi)

)2 ∣∣∣∣Si = s

]
for each s ∈ S. In addition, we have

E
[(√

π(s)

1− π(s)
A0(s,Xi) +

√
1− π(s)

π(s)
A1(s,Xi)

)2 ∣∣∣∣Si = s

]
= E

(
(yi,s − Ψ̃>i,sγs)

2

∣∣∣∣Si = s

)
,

where

yi,s =

√
1− π(s)

π(s)
(νY (1, s,Xi)− τνD(1, s,Xi)) +

√
π(s)

1− π(s)
(νY (0, s,Xi)− τνD(0, s,Xi))

and

γs =

√
1− π(s)

π(s)
(t1,s − τb1,s) +

√
π(s)

1− π(s)
(t0,s − τb0,s).

By solving the first order condition, we find that

Θ∗ =

 (θ∗a,s, β
∗
a,s)a=0,1,s∈S :√

1−π(s)
π(s)

(θ∗1,s − τβ∗1,s) +
√

π(s)
1−π(s)

(θ∗0,s − τβ∗0,s) = E(Ψ̃i,sΨ̃
>
i,s|Si = s)−1E(Ψ̃i,syi,s|Si = s)
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=


(θ∗a,s, β

∗
a,s)a=0,1,s∈S :√

1−π(s)
π(s)

(θ∗1,s − τβ∗1,s) +
√

π(s)
1−π(s)

(θ∗0,s − τβ∗0,s)

=
√

1−π(s)
π(s)

(θL1,s − τβL1,s) +
√

π(s)
1−π(s)

(θL0,s − τβL0,s).

 ,

where

θLa,s = [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sν

Y (a, s,Xi)|Si = s)]

= [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sE(Yi(Di(a))|Si, Xi)|Si = s)]

= [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sYi(Di(a))|Si = s)].

Similarly, we have

βLa,s = [E(Ψ̃i,sΨ̃
>
i,s|Si = s)]−1[E(Ψ̃i,sDi(a)|Si = s)].

This concludes the proof.

S.K Proof of Theorem 5.3

In order to verify Assumption 3, by Theorem 5.1, it suffices to show that θ̂La,s
p−→ θLa,s

and β̂La,s
p−→ βLa,s. We focus on the former with a = 1. Let {W s

i , X
s
i }i∈[n] be generated

independently from the joint distribution of (Yi(Di(1)), Xi) given Si = s and denote Ψs
i,s =

Ψs(X
s
i ), Ψ̃s

i,s = Ψs(X
s
i )− EΨs(X

s
i ), Ψ̇s

i,1,s = Ψs(X
s
i )− 1

n1(s)

∑N(s)+n1(s)
i=N(s)+1 Ψs(X

s
i ), and Ψ̇s

i,0,s =

Ψs(X
s
i )− 1

n0(s)

∑N(s)+n(s)
i=N(s)+n1(s)+1 Ψs(X

s
i ). Then, we have

θ̂L1,s
d
=

(
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̇s
i,1,sΨ̇

s,>
i,1,s

)−1(
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̇s
i,1,sW

s
i

)
.

As 1
n1(s)

∑N(s)+n1(s)
i=N(s)+1 Ψs

i,s

p−→ EΨs
i,s = E(Ψs(X

s
i )) = E(Ψs(Xi)|Si = s) by the standard LLN,

we have (
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̇s
i,1,sΨ̇

s,>
i,1,s

)
=

(
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̃s
i,sΨ̃

s,>
i,s

)
+ op(1),

(
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̇s
i,1,sW

s
i

)
=

(
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̃s
i,sW

s
i

)
+ op(1).
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In addition, by the standard LLN,

1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̃s
i,sΨ̃

s,>
i,s

p−→ EΨ̃s
i,sΨ̃

s,>
i,s = E(Ψ̃i,sΨ̃

>
i,s|Si = s),

1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

Ψ̃s
i,sW

s
i

p−→ EΨ̃s
i,sW

s
i = E(Ψ̃i,sYi(Di(1))|Si = s).

Last, Assumption 5 implies E(Ψ̃i,sΨ̃
>
i,s|Si = s) is invertible, this means

θ̂L1,s
p−→
[
E(Ψ̃i,sΨ̃

>
i,s|Si = s)

]−1

E(Ψ̃i,sYi(Di(1))|Si = s) = θL1,s.

Similarly, we can show that θ̂L0,s
p−→ θL0,s and β̂La,s

p−→ βLa,s for a = 0, 1 and s ∈ S. Therefore,

Assumption 3 holds, and thus, all the results in Theorem 3.1 hold for τ̂L. Then, the optimality

result in the second half of Theorem 5.3 is a direct consequence of Theorem 5.2.

Last, we compare the asymptotic variances of TSLS estimator and the estimator with

the optimal linear adjustment with π(s) = π for s ∈ S and Ψi,s = Xi. In this special case, we

first note that the asymptotic variance of the estimator with the optimal linear adjustment

is

σ2
1 + σ2

0 + σ2
2

[E(D(1)−D(0))]2
,

where

σ2
0 = E(1− π)Ξ2

0(Di, Si)

Ξ0(Di, Si) :=

[(
1

1− π
− 1

)
X̃>i θ0s + X̃>i θ1s −

Z̃i
1− π

]
− τ

[(
1

1− π
− 1

)
X̃>i β0s + X̃>i β1s −

D̃i(0)

1− π

]
σ2

1 = EπΞ2
1(Di, Si),

Ξ1(Di, Si) :=

[(
1− 1

π

)
X̃>i θ1s − X̃>i θ0s +

W̃i

π

]
− τ

[(
1− 1

π

)
X̃>i β1s − X̃>i β0s +

D̃i(1)

π

]
,

σ2
2 = E

[
E
[
Y (D(1))− Y (D(0))− (D(1)−D(0))τ |Si

]]2

,

with

θas =
[
E(X̃isX̃

>
is |Si = s)

]−1 [
E(X̃isYi(Di(a))|Si = s)

]
and
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βas =
[
E(X̃isX̃

>
is |Si = s)

]−1 [
E(X̃isDi(a)|Si = s)

]
, a = 0, 1. (S.K.1)

Observe that σ2
TSLS,1 + σ2

TSLS,0 can also be written as

E
[
π(Si)Ξ1(Di, Si)2 + (1− π(Si))Ξ0(Di, Si)2

]
, (S.K.2)

where

Ξ1(Di, Si) :=

[(
1− 1

π(Si)

)
X̃>i θ1s − X̃>i θ0s +

W̃i

π(Si)

]

− τ

[(
1− 1

π(Si)

)
X̃>i β1s − X̃>i β0s +

D̃i(1)

π(Si)

]
,

Ξ0(Di, Si) :=

[(
1

1− π(Si)
− 1

)
X̃>i θ0s + X̃>i θ1s −

Z̃i
1− π(Si)

]

− τ

[(
1

1− π(Si)
− 1

)
X̃>i β0s + X̃>i β1s −

D̃i(0)

1− π(Si)

]
,

with θ1s = θ0s, β1s = β0s and θ1s − τβ1s = λ∗x, where λ∗x is the first dx coefficients of λ∗

defined in Theorem 2.1 where dx is the dimension of Xi. By Theorem 5.2, we achieve the

optimal linear adjustment when θa,s and βa,s satisfy (S.K.1), which implies

σ2
1 + σ2

0 ≤ σ2
TSLS,1 + σ2

TSLS,0.

In addition, we have σ2
2 = σ2

TSLS,2 and 0 ≤ σ2
TSLS,3, which implies the desired result.

S.L Proof of Theorem 5.4

Let {Ds
i (1), Xs

i }i∈[n] be generated independently from the joint distribution of (Di(1), Xi)

given Si = s, Ψs
i,s = Ψs(X

s
i ), and Ψ̊s

i,s = (1,Ψs,>
i,s )>. Then, we have, pointwise in b,

1

n1(s)

∑
i∈I1(s)

[
Di log(λ(Ψ̊>i,sb)) + (1−Di) log(1− λ(Ψ̊>i,sb))

]
d
=

1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

[
Ds
i (1) log(λ(Ψ̊s,>

i,s b)) + (1−Ds
i (1)) log(1− λ(Ψ̊s,>

i,s b))
]
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p−→ E
[
Ds
i (1) log(λ(Ψ̊s,>

i,s b)) + (1−Ds
i (1)) log(1− λ(Ψ̊s,>

i,s b))
]

= E
[
Di(1) log(λ(Ψ̊>i,sb)) + (1−Di(1)) log(1− λ(Ψ̊>i,sb))|Si = s

]
.

As the logistic likelihood function is concave in b, the pointwise convergence in b implies

uniform convergence, i.e.,

sup
b

∣∣∣∣ 1

n1(s)

∑
i∈I1(s)

[
Di log(λ(Ψ̊>i,sb)) + (1−Di) log(1− λ(Ψ̊>i,sb))

]
− E

[
Di(1) log(λ(Ψ̊>i,sb)) + (1−Di(1)) log(1− λ(Ψ̊>i,sb))|Si = s

]∣∣∣∣ p−→ 0.

Then, by the standard proof for the extremum estimation, we have β̂MLE
a,s

p−→ βMLE
a,s . Sim-

ilarly, we can show that θ̂OLSa,s

p−→ θOLSa,s . The verifies Assumption 4(i). Assumptions 4(ii)

and 4(iii) follow from Assumption 6(ii). Then, the desired results hold due to Theorem 5.1.

S.M Proof of Theorem 5.5

We note that the adjustments proposed in Theorem 5.5 are still parametric. Specifically, we

have

µY (a, s,Xi) = ΛY
a,s(Xi, {βMLE

1,s , βMLE
0,s , θFa,s}),

µD(a, s,Xi) = ΛD
a,s(Xi, {βMLE

1,s , βMLE
0,s , βFa,s}),

µ̂Y (a, s,Xi) = ΛY
a,s(Xi, {β̂MLE

1,s , β̂MLE
0,s , θ̂Fa,s}), and

µ̂D(a, s,Xi) = ΛD
a,s(Xi, {β̂MLE

1,s , β̂MLE
0,s , β̂Fa,s}),

where

ΛY
a,s(Xi, {b1, b0, t

∗
a}) =

 Ψ>i,s

λ(Ψ̊>i,sb1)

λ(Ψ̊>i,sb0)


>

t∗a and ΛD
a,s(Xi, {b1, b0, b

∗
a}) =

 Ψ>i,s

λ(Ψ̊>i,sb1)

λ(Ψ̊>i,sb0)


>

b∗a.

Therefore, in view of Theorem 5.1, to verify Assumption 3, it suffices to show that θ̂Fa,s
p−→ θFa,s

and β̂Fa,s
p−→ βFa,s, as we have already shown the consistency of β̂MLE

a,s in the proof of Theorem
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5.4. We focus on θ̂Fa,s. Define Φ̇i,a,s := Φi,s − 1
na(s)

∑
i∈Ia(s) Φi,s, where

Φi,s =

 Ψi,s

λ(Ψ̊>i,sβ
MLE
1,s )

λ(Ψ̊>i,sβ
MLE
0,s )

 .

We first show that

1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sΦ̆
>
i,a,s =

1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sΦ̇
>
i,a,s + op(1). (S.M.1)

Let v, u ∈ <dΨ+2 be two arbitrary vectors such that ||u||2 = ||v||2 = 1. Then, we have∣∣∣∣v> [ 1

na(s)

∑
i∈Ia(s)

(
Φ̆i,a,sΦ̆

>
i,a,s − Φ̇i,a,sΦ̇

>
i,a,s

)]
u

∣∣∣∣
=

∣∣∣∣ 1

na(s)

∑
i∈Ia(s)

[
(v>Φ̆i,a,s)(u

>Φ̆i,a,s)− (v>Φ̇i,a,s)(u
>Φ̇i,a,s)

]∣∣∣∣
=

∣∣∣∣ 1

na(s)

∑
i∈Ia(s)

[
v>(Φ̆i,a,s − Φ̇i,a,s)(u

>Φ̆i,a,s) + (v>Φ̇i,a,s)u
>(Φ̆i,a,s − Φ̇i,a,s)

]∣∣∣∣
≤ 1

na(s)

∑
i∈Ia(s)

||Φ̆i,a,s − Φ̇i,a,s||2(||Φ̆i,a,s||2 + ||Φ̇i,a,s||2) (S.M.2)

where the first inequality is due to Cauchy-Schwarz inequality. We now show (S.M.2) is

op(1). First note that

||Φ̆i,a,s − Φ̇i,a,s||2 ≤
∑
a′=0,1

‖Ba′‖2

where

Ba′ := λ(Ψ̊>i,sβ̂
MLE
a′,s )− λ(Ψ̊>i,sβ

MLE
a′,s )− 1

na(s)

∑
i∈Ia(s)

[
λ(Ψ̊>i,sβ̂

MLE
a′,s )− λ(Ψ̊>i,sβ

MLE
a′,s )

]
.

Note that

λ(Ψ̊>i,sβ̂
MLE
a′,s )− λ(Ψ̊>i,sβ

MLE
a′,s ) =

∂λ(Ψ̊>i,sβ̃
MLE
a′,s )

∂βa′,s
(β̂MLE

a′,s − βMLE
a′,s )
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1

na(s)

∑
i∈Ia(s)

λ(Ψ̊>i,sβ̂
MLE
a′,s )− λ(Ψ̊>i,sβ

MLE
a′,s ) =

[
1

na(s)

∑
i∈Ia(s)

∂λ(Ψ̊>i,sβ̃
MLE
a′,s )

∂βa′,s

]
(β̂MLE

a′,s − βMLE
a′,s )

where β̃MLE
a′,s is a mid-point of β̂MLE

a′,s and βMLE
a′,s . Hence

‖Ba′‖2 =

∥∥∥∥∂λ(Ψ̊>i,sβ̃
MLE
a′,s )

∂βa′,s
− 1

na(s)

∑
i∈Ia(s)

∂λ(Ψ̊>i,sβ̃
MLE
a′,s )

∂βa′,s

∥∥∥∥
2

‖β̂MLE
a′,s − βMLE

a′,s ‖2.

Since ∂λ(u)/∂u ≤ 1,∥∥∥∥∂λ(Ψ̊>i,sβ̃
MLE
a′,s )

∂βa′,s

∥∥∥∥
2

=

∥∥∥∥ ∂λ(u)

∂u

∣∣∣∣
u=Ψ̊>i,sβ̃

MLE
a′,s

· Ψ̊>i,s
∥∥∥∥

2

≤ ‖Ψ̊i,s‖2.

Thus,

‖Ba′‖2 ≤
(
‖Ψ̊i,s‖2 +

1

na(s)

∑
i∈Ia(s)

‖Ψ̊i,s‖2

)
‖β̂MLE

a′,s − βMLE
a′,s ‖2

≤
(

2 + ‖Ψi,s‖2 +
1

na(s)

∑
i∈Ia(s)

‖Ψi,s‖2

)
‖β̂MLE

a′,s − βMLE
a′,s ‖2,

||Φ̆i,a,s − Φ̇i,a,s||2 ≤
(

2 + ‖Ψi,s‖2 +
1

na(s)
·
∑
i∈Ia(s)

‖Ψi,s‖2

) ∑
a′=0,1

‖β̂MLE
a′,s − βMLE

a′,s ‖2. (S.M.3)

Moreover, we can show

||Φ̆i,a,s||2 + ||Φ̇i,a,s||2 ≤ 2

(
4 + ||Ψi,s||2 +

1

na(s)

∑
i∈Ia(s)

‖Ψi,s‖2

)
. (S.M.4)

Substituting (S.M.3), (S.M.4) and the fact that ||β̂MLE
a,s − βMLE

a,s ||2 = op(1) into (S.M.2), we

show that (S.M.2) is op(1). As it holds for arbitrary u, v, it implies (S.M.1). Similarly, we

can show that

1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sYi =
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sYi + op(1). (S.M.5)
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Following the same argument in the proof of Theorem 5.3, we can show that[
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sΦ̇
>
i,a,s

]−1 [
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sYi

]
p−→ θFa,s.

In addition, by Assumption 7, with probability approaching one, there exists a constant

c > 0 such that

λmin

(
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sΦ̇
>
i,a,s

)
≥ c. (S.M.6)

Combining (S.M.1), (S.M.5), and (S.M.6), we can show that

θ̂Fa,s =

[
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sΦ̆
>
i,a,s

]−1 [
1

na(s)

∑
i∈Ia(s)

Φ̆i,a,sYi

]

=

[
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sΦ̇
>
i,a,s

]−1 [
1

na(s)

∑
i∈Ia(s)

Φ̇i,a,sYi

]
+ op(1)

p−→ θFa,s.

Similarly, we have β̂Fa,s
p−→ βFa,s, which implies all the results in Theorem 3.1 hold for τ̂F .

The optimality result in the second half of the theorem is a direct consequence of Theorem

5.2.

S.N Proof of Theorem S.C.1

We focus on verifying Assumption 3 for µ̂D(a, s,Xi). The proof for µ̂Y (a, s,Xi) is similar

and hence omitted. Following the proof of Theorem 5.4, we note that, for each a = 0, 1 and

s ∈ S, the data in cell Ia(s), denoted {Ds
i (a), Xs

i }i∈[n], can be viewed as i.i.d. following the

joint distribution of (Di(a), Xi) given Si = s conditionally on {Ai, Si}i∈[n]. Then following

the standard logistic sieve regression in Hirano et al. (2003), we have

max
a=0,1,s∈S

||β̂NPa,s − βNPa,s ||2 = Op

(√
hn/na(s)

)
.

Then we have∣∣∣∣
∑

i∈I1(s) ∆D(a, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆D(a, s,Xi)

n0(s)

∣∣∣∣
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≤
∣∣∣∣
∑

i∈I1(s)

(
λ(Ψ̊>i,nβ̂

NP
a,s )− λ(Ψ̊>i,nβ

NP
a,s )

)
n1(s)

−
∑

i∈I0(s)

(
λ(Ψ̊>i,nβ̂

NP
a,s )− λ(Ψ̊>i,nβ

NP
a,s )

)
n0(s)

∣∣∣∣
+

∣∣∣∣ 1

n1(s)

∑
i∈I1(s)

(
RD(a, s,Xi)− E[RD(a, s,Xi)|Si = s]

)∣∣∣∣
+

∣∣∣∣ 1

n0(s)

∑
i∈I0(s)

(
RD(a, s,Xi)− E[RD(a, s,Xi)|Si = s]

)∣∣∣∣ =: I + II + III. (S.N.1)

To bound term I in (S.N.1), we define Ma,s(β1, β2) := E
[
λ(Ψ̊>i,nβ1)− λ(Ψ̊>i,nβ2)|Si = s

]
=

E[λ(Ψ̊s,>
i,n β1)− λ(Ψ̊s,>

i,n β2)], where Ψ̊s
i,n = Ψ̊(Xs

i ). Then we have

I ≤
∣∣∣∣
∑

i∈I1(s)

[
λ(Ψ̊>i,nβ̂

NP
a,s )− λ(Ψ̊>i,nβ

NP
a,s )−Ma,s(β̂

NP
a,s , β

NP
a,s )

]
n1(s)

∣∣∣∣
+

∣∣∣∣
∑

i∈I0(s)

[
λ(Ψ̊>i,nβ̂

NP
a,s )− λ(Ψ̊>i,nβ

NP
a,s )−Ma,s(β̂

NP
a,s , β

NP
a,s )

]
n0(s)

∣∣∣∣ =: I1 + I2.

Following the argument in the proof of Theorem 5.1, in order to show I1 = op(n
−1/2), we

only need to show

n1/2E
[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε, n0(s) ≥ nε} = o(1),

where ε is an arbitrary but fixed constant, and

F :=
{
λ(Ψ̊>i,nβ1)− λ(Ψ̊>i,nβ

NP
a,s ) : β1 ∈ <hn , ||β1 − βNPa,s ||2 ≤ C

√
hn/na(s)

}
,

for some constant C > 0. Furthermore, we note that F has a bounded envelope, is of the

VC-type with VC-index upper bounded by Chn,2 and has

sup
f∈F

E
[
f 2|{Ai, Si}i∈[n]

]
≤ Chn
na(s)

.

Invoking Chernozhukov et al. (2014, Corollary 5.1) with A being a constant, ν = Chn,

σ2 = Chn/na(s), and F and M being 2hn, we have

n1/2E
[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε, n0(s) ≥ nε}

2See van der Vaart and Wellner (1996, Section 2.6.5) for the calculation of the VC index.
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≤ C

√
n

n1(s)

(√
h2
n log n

na(s)
+
hn log n√
n1(s)

)
1{n1(s) ≥ nε, n0(s) ≥ nε}

≤ C

√
1

ε

(√
h2
n log n

nε
+
h log n√
nε

)
→ 0,

as n→∞.

Similarly, we can show I2 = op(n
−1/2). In addition, we note that

II
d
=

∣∣∣∣ 1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

(
RD(a, s,Xs

i )− E[RD(a, s,Xs
i )]
)∣∣∣∣ = op(n

−1/2)

by the Chebyshev’s inequality as ERD,2(a, s,Xs
i ) = E[RD,2(a, s,Xi)|Si = s] = o(1) by As-

sumption S.C.1(ii). Similarly we have III = op(n
−1/2). Combining the bounds of I, II, III

with (S.N.1), we have∣∣∣∣
∑

i∈I1(s) ∆D(a, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆D(a, s,Xi)

n0(s)

∣∣∣∣ = op(n
−1/2),

which verifies Assumption 3(i).

To verify Assumption 3(ii), we note that

1

n

n∑
i=1

∆D,2(a, s,Xi) ≤
2

n

n∑
i=1

(
λ(Ψ̊>i,nβ̂

NP
a,s )− λ(Ψ̊>i,nβ

NP
a,s )

)2
+

2

n

n∑
i=1

RD,2(a, Si, Xi)

≤ 2

n

n∑
i=1

‖Ψ̊i,n‖2
2‖β̂NPa,s − βNPa,s ‖2

2 +
2

n

n∑
i=1

RD,2(a, Si, Xi)

=
2

n

n∑
i=1

‖Ψ̊i,n‖2
2‖β̂NPa,s − βNPa,s ‖2

2 + op(1) ≤ 2 max
i
‖Ψ̊i,n‖2

2 max
s
‖β̂NPa,s − βNPa,s ‖2

2 + op(1)

= Op

(
ζ2(hn)hn/na(s)

)
+ op(1) = op(1)

where the first equality is due to Assumption S.C.1(ii), and the second equality is due to

Assumption S.C.1(iv).

Last, Assumption 3(iii) is implied by Assumption 1(vi) via Jensen’s inequality.
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S.O Proof of Theorem 5.6

We focus on verifying Assumption 3 for µ̂D(a, s,Xi). The proof for µ̂Y (a, s,Xi) is similar

and hence omitted. Following the proof of Theorem 5.4, we note that, for each a = 0, 1 and

s ∈ S, the data in cell Ia(s), denoted {Ds
i (a), Xs

i }i∈[n], can be viewed as i.i.d. following the

joint distribution of (Di(a), Xi) given Si = s conditionally on {Ai, Si}i∈[n]. Then following

the standard logistic Lasso regression in Belloni et al. (2017), we have

max
a=0,1,s∈S

||β̂Ra,s − βRa,s||2 = Op

(√
hn log pn/na(s)

)
and max

a=0,1,s∈S
||β̂Ra,s||0 = Op(hn).

Then, we have∣∣∣∣
∑

i∈I1(s) ∆D(a, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆D(a, s,Xi)

n0(s)

∣∣∣∣
≤
∣∣∣∣
∑

i∈I1(s)

(
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)
)

n1(s)
−
∑

i∈I0(s)

(
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)
)

n0(s)

∣∣∣∣
+

∣∣∣∣ 1

n1(s)

∑
i∈I1(s)

(
RD(a, s,Xi)− E[RD(a, s,Xi)|Si = s]

)∣∣∣∣
+

∣∣∣∣ 1

n0(s)

∑
i∈I0(s)

(
RD(a, s,Xi)− E[RD(a, s,Xi)|Si = s]

)∣∣∣∣ := I + II + III. (S.O.1)

To bound term I in (S.N.1), we define Ma,s(β1, β2) := E
[
λ(Ψ̊>i,nβ1)− λ(Ψ̊>i,nβ2)|Si = s

]
=

E[λ(Ψ̊s,>
i,n β1)− λ(Ψ̊s,>

i,n β2)], where Ψ̊s
i,n = Ψ̊(Xs

i ). Then we have

I ≤
∣∣∣∣
∑

i∈I1(s)

[
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)−Ma,s(β̂

R
a,s, β

R
a,s)
]

n1(s)

∣∣∣∣
+

∣∣∣∣
∑

i∈I0(s)

[
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)−Ma,s(β̂

R
a,s, β

R
a,s)
]

n0(s)

∣∣∣∣ =: I1 + I2.

Following the argument in the proof of Theorems 5.1 and S.C.1, in order to show I1 =

op(n
−1/2), we only need to show

n1/2E
[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε, n0(s) ≥ nε} = o(1),
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where ε is an arbitrary but fixed constant, and

F :=
{
λ(Ψ̊>i,nβ1)− λ(Ψ̊>i,nβ

R
a,s) : β1 ∈ <hn , ||β1 − βRa,s||2 ≤ C

√
hn log(pn)/na(s), ||β1||0 ≤ Chn

}
,

for some constant C > 0. Furthermore, we note that F has a bounded envelope and

sup
Q
N(F , eQ, ε||F ||Q,2) ≤

(
c1pn
ε

)c2hn
,

where c1, c2 are two fixed constants, N(·) is the covering number, eQ(f, g) =
√
Q|f − g|2,

and the supremum is taken over all discrete probability measures Q. Last, we have

sup
f∈F

E
[
f 2|{Ai, Si}i∈[n]

]
≤ Chn log pn

na(s)
.

Invoking Chernozhukov et al. (2014, Corollary 5.1) with A = Cpn, ν = Chn, σ2 =

Chn log(pn)/na(s), and F and M being 2, we have

n1/2E
[
||Pn1(s) − P||F |{Ai, Si}i∈[n]

]
1{n1(s) ≥ nε, n0(s) ≥ nε}

≤ C

√
n

n1(s)

√√√√hn
hn log pn
na(s)

log

(
pn√
hn log pn
na(s)

)
+

hn√
n1(s)

log

(
pn√
hn log pn
na(s)

) 1{n1(s) ≥ nε, n0(s) ≥ nε}

≤ C

(√
n

n1(s)

)(
hn log(pn)√
n1(s) ∧ n0(s)

)
1{n1(s) ≥ nε, n0(s) ≥ nε} → 0.

The bounds for I2, II and III can be established following the same argument as in the

proof of Theorem S.C.1. We omit the detail for brevity. This leads to Assumption 3(i).

To verify Assumption 3(ii), we note that

1

n

n∑
i=1

∆D,2(a, s,Xi) ≤
2

n

n∑
i=1

(
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)
)2

+
2

n

n∑
i=1

RD,2(a, Si, Xi)

=
2

n

n∑
i=1

(
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)
)2

+ op(1) = op(1),

where the first equality is due to Assumption 8(iii) and the second equality is by Assumption
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8(vi) and the fact that

2

n

n∑
i=1

(
λ(Ψ̊>i,nβ̂

R
a,s)− λ(Ψ̊>i,nβ

R
a,s)
)2
.

(β̂Ra,s − βRa,s)>

n

n∑
i=1

Ψ̊i,nΨ̊>i,n(β̂Ra,s − βRa,s) . ||β̂Ra,s − βRa,s||22 = op(1),

where the first probability inequality is due to the fact that λ(·) is Lipschitz continuous with

Lipschitz constant 1. Last, Assumption 3(iii) is implied by Assumption 1(vi) via Jensen’s

inequality.

S.P Proof of Theorem S.B.1

Some part of the proof of part (i) is due to Ansel et al. (2018) while some part of the proof

is original. Let Ui := (1, X>i )> and λ̂as := (γ̂bas, ν̂
b,>
as )> for a = 0, 1 and b = Y,D. Consider

λ̂D0s as an example; note that

λ̂D0s =

(
1

n

n∑
i=1

(1− Ai)1{Si = s}UiU>i
)−1

1

n

n∑
i=1

(1− Ai)1{Si = s}UiDi.

Consider the denominator of λ̂D0s:

1

n

n∑
i=1

(1− Ai)1{Si = s}UiU>i =
1

n

n∑
i=1

(π(s)− Ai)1{Si = s}UiU>i +
1

n

n∑
i=1

(1− π(s))1{Si = s}UiU>i

=
1

n

n∑
i=1

(π(s)− Ai)1{Si = s}
(
UiU

>
i − E[UiU

>
i |Si]

)
+

1

n

n∑
i=1

(π(s)− Ai)1{Si = s}E[UiU
>
i |Si]

+
1

n

n∑
i=1

(1− π(s))1{Si = s}UiU>i . (S.P.1)

Consider the first term of (S.P.1). Note that

E
[

1

n

n∑
i=1

(π(s)− Ai)1{Si = s}
(
UiU

>
i − E[UiU

>
i |Si]

)
|A(n), S(n)

]
= 0.

Invoking the conditional Chebyshev’s inequality, we have, for any a > 0, 1 ≤ k, ` ≤ dim(Ui),

P
(∣∣∣∣ 1n

n∑
i=1

(π(s)−Ai)1{Si = s}
(
UikUi` − E[UikUi`|Si]

)∣∣∣∣ ≥ a|A(n), S(n)

)
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≤ 1

a2
var

(
1

n

n∑
i=1

(π(s)−Ai)1{Si = s}
(
UikUi` − E[UikUi`|Si]

)
|A(n), S(n)

)

=

∑
i,j∈[n](π(s)−Ai)(π(s)−Aj)1{Si = s}1{Sj = s}E

[(
UikUi` − E[UikUi`|Si]

) (
UjkUj` − E[UjkUj`|Sj ]

)
|A(n), S(n)

]
a2n2

=

∑
i∈[n](π(s)−Ai)

21{Si = s}E
[(
UikUi` − E[UikUi`|Si]

)2 |A(n), S(n)
]

a2n2

≤

∑
i∈[n](π(s)−Ai)

21{Si = s}E
[
U2
ikU

2
i`|Si

]
a2n2

≤

∑
i∈[n] E

[
U2
ikU

2
i`|Si = s

]
a2n2

= o(1) (S.P.2)

where the second equality is due to

E
[(
UikUi` − E[UikUi`|Si]

) (
UjkUj` − E[UjkUj`|Sj]

)
|A(n), S(n)

]
= E

[(
UikUi` − E[UikUi`|Si]

) (
UjkUj` − E[UjkUj`|Sj]

)
|S(n)

]
= E

[
UikUi` − E[UikUi`|Si]|S(n)

]
E
[
UjkUj` − E[UjkUj`|Sj]|S(n)

]
= E

[
UikUi` − E[UikUi`|Si]|Si

]
E
[
UjkUj` − E[UjkUj`|Sj]|Sj

]
= 0

for i 6= j, where the second equality is due to that UikUi` − E[UikUi`|Si] and UjkUj` −
E[UjkUj`|Sj] are independent conditional on S(n). From (S.P.2), we deduce that the first

term of (S.P.1) is op(1). Consider the second term of (S.P.1).

1

n

n∑
i=1

(π(s)− Ai)1{Si = s}E[UiU
>
i |Si] = E[UU>|S = s]

1

n

n∑
i=1

(π(s)− Ai)1{Si = s}

= E[UU>|S = s]
1

n
Bn(s) = op(1).

Consider the third term of (S.P.1).

1

n

n∑
i=1

(1− π(s))1{Si = s}UiU>i = (1− π(s))
n(s)

n

1

n(s)

n∑
i=1

1{Si = s}UiU>i

p−→ (1− π(s))p(s)E[UU>|S = s].

We hence have

1

n

n∑
i=1

(1− Ai)1{Si = s}UiU>i
p−→ (1− π(s))p(s)E[UU>|S = s].
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Similarly, we have

1

n

n∑
i=1

(1− Ai)1{Si = s}UiDi
p−→ (1− π(s))p̂(s)E[UD(0)|S = s]

λ̂D0s
p−→
(
E[UU>|S = s]

)−1

E[UD(0)|S = s]

λ̂D1s
p−→
(
E[UU>|S = s]

)−1

E[UD(1)|S = s].

Thus, we have

∑
s∈S

p̂(s)(γ̂D1s − γ̂D0s + (ν̂D1s − ν̂D0s)>X̄s) =
∑
s∈S

(λ̂D1s − λ̂D0s)>
 1

n

∑
i∈[n] 1{Si = s}

1
n

∑
i∈[n] Xi1{Si = s}


=
∑
s∈S

n(s)

n

1

n(s)

∑
i∈[n]

1{Si = s}U>i (λ̂D1s − λ̂D0s)

p−→
∑
s∈S

p(s)E[U>|S = s]
(
E[UU>|S = s]

)−1

E
[
U
(
D(1)−D(0)

)
|S = s

]
=
∑
s∈S

p(s)E
[
D(1)−D(0)|S = s

]
= E

[
D(1)−D(0)

]
where the second last equality is due to E[U>|S = s]

(
E[UU>|S = s]

)−1
= (1, 0, . . . , 0)

(Ansel et al. (2018) p290). Thus, the denominator of
√
n(τ̂S − τ) converges in probability to

E[D(1)−D(0)].

We now consider the numerator of
√
n(τ̂S − τ). Relying on a similar argument, we have

λ̂Y1s =

(
1

n

n∑
i=1

Ai1{Si = s}UiU>i
)−1

1

n

n∑
i=1

Ai1{Si = s}UiYi(Di(1))

p−→
(
E[UU>|S = s]

)−1

E[UY (D(1))|S = s]

λ̂Y0s =

(
1

n

n∑
i=1

(1− Ai)1{Si = s}UiU>i
)−1

1

n

n∑
i=1

(1− Ai)1{Si = s}UiYi(Di(0))

p−→
(
E[UU>|S = s]

)−1

E[UY (D(0))|S = s]

η̂1s := λ̂Y1s − τ λ̂D1s
p−→
(
E[UU>|S = s]

)−1

E
[
U
[
Y (D(1))− τD(1)

]
|S = s

]
=: η1s
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η̂0s := λ̂Y0s − τ λ̂D0s
p−→
(
E[UU>|S = s]

)−1

E
[
U
[
Y (D(0))− τD(0)

]
|S = s

]
=: η0s.

The numerator of
√
n(τ̂S − τ) could be written as

√
n
∑
s∈S

p̂(s)(γ̂Y1s − γ̂Y0s + (ν̂Y1s − ν̂Y0s)>X̄s)−
√
n
∑
s∈S

p̂(s)(γ̂D1s − γ̂D0s + (ν̂D1s − ν̂D0s)>X̄s)τ

=
√
n
∑
s∈S

p̂(s)
1

n(s)

∑
i∈[n]

1{Si = s}U>i
[
λ̂Y1s − τ λ̂D1s − (λ̂Y0s − τ λ̂D0s)

]
=
√
n
∑
s∈S

p̂(s)Ū>s (η̂1s − η1s)−
√
n
∑
s∈S

p̂(s)Ū>s (η̂0s − η0s) +
√
n
∑
s∈S

p̂(s)Ū>s (η1s − η0s)

(S.P.3)

where Ūs := 1
n(s)

∑
i∈[n] 1{Si = s}Ui

p−→ E[U |S = s]. Consider the first term of (S.P.3).

√
n
∑
s∈S

p̂(s)Ū>s (η̂1s − η1s)

=
∑
s∈S

p̂(s)Ū>s

(
1

n

n∑
i=1

Ai1{Si = s}UiU
>
i

)−1
1√
n

n∑
i=1

Ai1{Si = s}Ui

[
Yi(Di(1))− τDi(1)− U>i η1s

]
=
∑
s∈S

p̂(s)E[U>|S = s]

(
π(s)p̂(s)E[UU>|S = s]

)−1
1√
n

n∑
i=1

Ai1{Si = s}Ui

[
Yi(Di(1))− τDi(1)− U>i η1s

]
+ op(1)

=
∑
s∈S

1

π(s)
E[U>|S = s]

(
E[UU>|S = s]

)−1
1√
n

n∑
i=1

Ai1{Si = s}Ui

[
Yi(Di(1))− τDi(1)− U>i η1s

]
+ op(1)

=
∑
s∈S

1

π(s)

1√
n

n∑
i=1

Ai1{Si = s}
[
Yi(Di(1))− τDi(1)− U>i η1s

]
+ op(1) (S.P.4)

where the second equality is based on that

n−1/2

n∑
i=1

Ai1{Si = s}Ui
[
Yi(Di(1))− τDi(1)− U>i η1s

]
= Op(1),

which is implied by the asymptotic normality of (S.P.7), which we will prove shortly, and

the last equality is due to E[U>|S = s]
(
E[UU>|S = s]

)−1
= (1, 0, . . . , 0) (Ansel et al. (2018)

p290). Likewise, the second term of (S.P.3)

√
n
∑
s∈S

p̂(s)Ū>s (η̂0s − η0s)

=
∑
s∈S

1

1− π(s)

1√
n

n∑
i=1

(1− Ai)1{Si = s}
[
Yi(Di(0))− τDi(0)− U>i η0s

]
+ op(1). (S.P.5)
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Note that

ηas =

(
E
[
Y (D(a))− τD(a)|S = s

]
− E[X>νY Das |S = s]

νY Das

)

for a = 0, 1 via the Frisch-Waugh Theorem. Hence

U>i ηas = E
[
Y (D(a))− τD(a)|S = s

]
+X>i ν

Y D
as − E[X>νY Das |S = s]. (S.P.6)

Substituting (S.P.4), (S.P.5) and (S.P.6) into (S.P.3), we could write the numerator of√
n(τ̂S − τ) as

∑
s∈S

1

π(s)

1√
n

n∑
i=1

Ai1{Si = s}
[
Yi(Di(1))− τDi(1)− U>i η1s

]
−
∑
s∈S

1

1− π(s)

1√
n

n∑
i=1

(1−Ai)1{Si = s}
[
Yi(Di(0))− τDi(0)− U>i η0s

]
(S.P.7)

+
∑
s∈S

1√
n

∑
i∈[n]

1{Si = s}U>i (η1s − η0s) + op(1)

=
∑
s∈S

1

π(s)

1√
n

n∑
i=1

Ai1{Si = s}
[
Yi(Di(1))− τDi(1)− E

[
Y (D(1))− τD(1)|S = s

]
−
(
X>i ν

Y D
1s − E[X>νY D

1s |S = s]
)]

−
∑
s∈S

1

1− π(s)

1√
n

n∑
i=1

(1−Ai)1{Si = s}
[
Yi(Di(0))− τDi(0)− E

[
Y (D(0))− τD(0)|S = s

]
−
(
X>i ν

Y D
0s − E[X>νY D

0s |S = s]
)]

+
∑
s∈S

1√
n

∑
i∈[n]

1{Si = s}E
[
Y (D(1))− Y (D(0))− τ(D(1)−D(0))|S = s

]
+
∑
s∈S

1√
n

∑
i∈[n]

1{Si = s}
(
X>i (νY D

1s − νY D
0s )− E[X>(νY D

1s − νY D
0s )|S = s]

)
+ op(1)

=
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
[
Yi(Di(1))− τDi(1)−X>i νY D

1s − E
[
Y (D(1))− τD(1)−X>νY D

1s |S = s
]

π(s)

]
+
∑
s∈S

1√
n

∑
i∈[n]

Ai1{Si = s}
(
X>i (νY D

1s − νY D
0s )− E[X>(νY D

1s − νY D
0s )|S = s]

)

−
∑
s∈S

1√
n

n∑
i=1

(1−Ai)1{Si = s}
[
Yi(Di(0))− τDi(0)−X>i νY D

0s − E
[
Y (D(0))− τD(0)−X>νY D

0s |S = s
]

1− π(s)

]
+
∑
s∈S

1√
n

∑
i∈[n]

(1−Ai)1{Si = s}
(
X>i (νY D

1s − νY D
0s )− E[X>(νY D

1s − νY D
0s )|S = s]

)
+

1√
n

∑
i∈[n]

E
[
Y (D(1))− Y (D(0))− τ(D(1)−D(0))|S

]
+ op(1). (S.P.8)
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Define

ρis(1) :=
Yi(Di(1))− τDi(1)−X>i νY D1s

π(s)
+X>i (νY D1s − νY D0s )

ρis(0) :=
Yi(Di(0))− τDi(0)−X>i νY D0s

1− π(s)
−X>i (νY D1s − νY D0s ).

Then the first four terms of (S.P.8) could be written compactly as

Rn,1 :=
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
[
ρis(1)− E[ρis(1)|Si = s]

]
−
∑
s∈S

1√
n

n∑
i=1

(1− Ai)1{Si = s}
[
ρis(0)− E[ρis(0)|Si = s]

]
.

DefineRn,2 := 1√
n

∑
i∈[n] E

[
Y (D(1))− Y (D(0))− τ(D(1)−D(0))|S

]
. To establish the asymp-

totic distribution of (S.P.8), we first argue that

(Rn,1, Rn,2)
d
= (R∗n,1, Rn,2) + op(1)

for a random variable R∗n,1 that satisfies R∗n,1 ⊥⊥ Rn,2. Conditional on {S(n), A(n)}, the distri-

bution of Rn,1 is the same as the distribution of the same quantity where units are ordered

by strata and then ordered by Ai = 1 first and Ai = 0 second within strata. To this end,

define N(s) :=
∑n

i=1 1{Si < s} and F (s) := P(Si < s). Furthermore, independently for each

s ∈ S and independently of {S(n), A(n)}, let
{
Yi(1)s, Yi(0)s, Di(1)s, Di(0)s, Xs

i : 1 ≤ i ≤ n
}

be i.i.d. over i with distribution equal to that of (Y (1), Y (0), D(1), D(0), X)|S = s. Define

ρ̃is(a) := ρis(a)− E[ρis(a)|Si = s], ρ̃sis(a) := ρsis(a)− E[ρsis(a)|Si = s],

where

ρsis(1) :=
Y s
i (Ds

i (1))− τDs
i (1)−Xs,>

i νY D1s

π(s)
+Xs,>

i (νY D1s − νY D0s )

ρsis(0) :=
Y s
i (Ds

i (0))− τDs
i (0)−Xs,>

i νY D0s

1− π(s)
−Xs,>

i (νY D1s − νY D0s ).
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Then we have

Rn,1 :=
∑
s∈S

1√
n

n∑
i=1

1{Si = s}
[
Aiρ̃is(1)− (1− Ai)ρ̃is(0)

]
.

Define

R̃n,1 :=
∑
s∈S

[
1√
n

n
(

N(s)
n

+
n1(s)

n

)∑
i=n

N(s)
n

+1

ρ̃sis(1)− 1√
n

n
(

N(s)
n

+
n(s)
n

)∑
n
(

N(s)
n

+
n1(s)

n

)
+1

ρ̃sis(0)

]

R∗n,1 :=
∑
s∈S

[
1√
n

bn(F (s)+π(s)p(s))c∑
i=bnF (s)c+1

ρ̃sis(1)− 1√
n

bn(F (s)+p(s))c∑
i=bn(F (s)+π(s)p(s))c+1

ρ̃sis(0)

]
.

Thus Rn,1|S(n), A(n) d
= R̃n,1|S(n), A(n) (and as a by-product Rn,1

d
= R̃n,1). Since Rn,2 is a

function of {S(n), A(n)}, we have, arguing along the line of a joint distribution being the

product of a conditional distribution and a marginal distribution, (Rn,1, Rn,2)
d
= (R̃n,1, Rn,2).

Define the following partial sum process

gn(u) :=
1√
n

bnuc∑
i=1

ρ̃sis(1).

Under our assumptions, gn(u) converges weakly to a suitably scaled Brownian motion. Next,

by elementary properties of Brownian motion, we have that

gn
(
F (s) + π(s)p(s)

)
− gn

(
F (s)

)
=

1√
n

bn(F (s)+π(s)p(s))c∑
i=bnF (s)c+1

ρ̃sis(1) N
(

0, π(s)p(s) var
(
ρs(1)|S = s

))
.

(S.P.9)

Furthermore, since (
N(s)

n
,
n1(s)

n

)
p−→
(
F (s), π(s)p(s)

)
,

it follows that

gn

(
N(s) + n1(s)

n

)
− gn

(
N(s)

n

)
−
[
gn
(
F (s) + π(s)p(s)

)
− gn

(
F (s)

)] p−→ 0 (S.P.10)
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where the convergence follows from the stochastic equicontinuity of the partial sum process.

Using (S.P.9) and (S.P.10), we have:

(Rn,1, Rn,2)
d
= (R̃n,1, Rn,2) = (R∗n,1, Rn,2) + op(1) (S.P.11)

R∗n,1  N
(

0,
∑
s∈S

[
π(s)p(s) var

(
ρs(1)|S = s

)
+
[
1− π(s)

]
p(s) var

(
ρs(0)|S = s

)])
= N

(
0,E

[
π(S)

(
ρS(1)− E[ρS(1)|S]

)2
+ (1− π(S))

(
ρS(0)− E[ρS(0)|S]

)2
])

=: ζ1

where the convergence in distribution is due to an analogous argument for ρ̃sis(0) and the

independence of
{
Yi(1)s, Yi(0)s, Di(1)s, Di(0)s, Xs

i : 1 ≤ i ≤ n, s ∈ S
}

across both i and s.

Moreover, since R∗n,1 is a function of
{
Yi(1)s, Yi(0)s, Di(1)s, Di(0)s, Xs

i : 1 ≤ i ≤ n, s ∈ S
}

⊥⊥ S(n), A(n), and Rn,2 is a function of {S(n), A(n)}, we see that R∗n,1 ⊥⊥ Rn,2. Thus (S.P.11)

implies

(Rn,1, Rn,2)
d
= (R∗n,1, Rn,2) + op(1) 

(
ζ1, ζ2

)
where ζ1 and ζ2 are independent, with

ζ2 := N
(

0,E
[(

E
[
Y (D(1))− Y (D(0))− τ(D(1)−D(0))|S

])2
])

.

We hence show that the asymptotic distribution of the numerator of
√
n(τ̂S − τ) is ζ1 + ζ2.

This completes the proof of part (i). The proof of part (ii), available upon request, is omitted

in the interest of space as it is quite similar to that of part (ii) of Theorem 3.1.

S.Q Technical Lemmas Used in the Proof of Theorem

3.1

Lemma S.Q.1. Suppose assumptions in Theorem 3.1 hold. Then, we have

Rn,1 =
1√
n

n∑
i=1

(
1− 1

π(Si)

)
Aiµ̃

Y (1, Si, Xi) +
1√
n

n∑
i=1

(1− Ai)µ̃Y (1, Si, Xi) + op(1),
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Rn,2 =
1√
n

n∑
i=1

(
1

1− π(Si)
− 1

)
(1− Ai)µ̃Y (0, Si, Xi)−

1√
n

n∑
i=1

Aiµ̃
Y (0, Si, Xi) + op(1),

Rn,3 =
1√
n

n∑
i=1

1

π(Si)
W̃iAi −

1√
n

n∑
i=1

1− Ai
1− π(Si)

Z̃i +
1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)
+ op(1),

where for a = 0, 1,

µ̃Y (a, Si, Xi) := µY (a, Si, Xi)− µY (a, Si), µY (a, Si) := E
[
µY (a, Si, Xi)|Si

]
,

Wi := Yi(1)Di(1) + Yi(0)(1−Di(1)), Zi := Yi(1)Di(0) + Yi(0)(1−Di(0)),

W̃i := Wi − E[Wi|Si], and Z̃i := Zi − E[Zi|Si].

Proof. We have

Rn,1 =
1√
n

n∑
i=1

[
µ̂Y (1, Si, Xi)−

Aiµ̂
Y (1, Si, Xi)

π̂(Si)

]
= − 1√

n

n∑
i=1

Ai − π̂(Si)

π̂(Si)
µ̂Y (1, Si, Xi)

= − 1√
n

n∑
i=1

Ai − π̂(Si)

π̂(Si)

[
µ̂Y (1, Si, Xi)− µY (1, Si, Xi) + µY (1, Si, Xi)

]
= − 1√

n

n∑
i=1

Ai − π̂(Si)

π̂(Si)
∆Y (1, Si, Xi)−

1√
n

n∑
i=1

Ai
π̂(Si)

µY (1, Si, Xi) +
1√
n

n∑
i=1

µY (1, Si, Xi)

= − 1√
n

n∑
i=1

Ai − π̂(Si)

π̂(Si)
∆Y (1, Si, Xi)−

1√
n

n∑
i=1

Ai
π̂(Si)

µ̃Y (1, Si, Xi) +
1√
n

n∑
i=1

µ̃Y (1, Si, Xi),

(S.Q.1)

where the last equality is due to

1√
n

n∑
i=1

Ai
π̂(Si)

µY (1, Si) =
1√
n

n∑
i=1

µY (1, Si).

Consider the first term of (S.Q.1).∣∣∣∣ 1√
n

n∑
i=1

Ai − π̂(Si)

π̂(Si)
∆Y (1, Si, Xi)

∣∣∣∣ =

∣∣∣∣ 1√
n

∑
s∈S

n∑
i=1

Ai − π̂(s)

π̂(s)
∆Y (1, s,Xi)1{Si = s}

∣∣∣∣
52



=
1√
n

∣∣∣∣∑
s∈S

1

π̂(s)

n∑
i=1

Ai∆
Y (1, s,Xi)1{Si = s} −

∑
s∈S

n∑
i=1

∆Y (1, s,Xi)1{Si = s}
∣∣∣∣

=
1√
n

∣∣∣∣∑
s∈S

∑
i∈I1(s)

∆Y (1, s,Xi)
n(s)

n1(s)
−
∑
s∈S

∑
i∈I0(s)∪I1(s)

∆Y (1, s,Xi)

∣∣∣∣
=

1√
n

∣∣∣∣∑
s∈S

∑
i∈I1(s)

∆Y (1, s,Xi)
n0(s)

n1(s)
−
∑
s∈S

∑
i∈I0(s)

∆Y (1, s,Xi)

∣∣∣∣
=

1√
n

∣∣∣∣∑
s∈S

n0(s)

[∑
i∈I1(s) ∆Y (1, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆Y (1, s,Xi)

n0(s)

]∣∣∣∣
≤ 1√

n

∑
s∈S

n0(s)

∣∣∣∣
∑

i∈I1(s) ∆Y (1, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆Y (1, s,Xi)

n0(s)

∣∣∣∣ = op(1)

where the last equality is due to Assumption 3. Thus

Rn,1 = − 1√
n

n∑
i=1

Ai
π̂(Si)

µ̃Y (1, Si, Xi) +
1√
n

n∑
i=1

µ̃Y (1, Si, Xi) + op(1)

= − 1√
n

n∑
i=1

Ai
π̂(Si)

µ̃Y (1, Si, Xi) +
1√
n

n∑
i=1

Aiµ̃
Y (1, Si, Xi) +

1√
n

n∑
i=1

(1− Ai)µ̃Y (1, Si, Xi) + op(1)

=
1√
n

n∑
i=1

(
1− 1

π̂(Si)

)
Aiµ̃

Y (1, Si, Xi) +
1√
n

n∑
i=1

(1− Ai)µ̃Y (1, Si, Xi) + op(1).

(S.Q.2)

In addition, we note that

1√
n

n∑
i=1

(
1− 1

π̂(Si)

)
Aiµ̃

Y (1, Si, Xi) =
1√
n

n∑
i=1

(
1− 1

π(Si)

)
Aiµ̃

Y (1, Si, Xi)

+
∑
s∈S

(
1

π(s)
− 1

π̂(s)

)
1√
n

n∑
i=1

Aiµ̃
Y (1, s,Xi)1{Si = s}.

Note that under Assumption 1(i), conditional on {S(n), A(n)}, the distribution of

1√
n

n∑
i=1

Aiµ̃
Y (1, s,Xi)1{Si = s}

is the same as the distribution of the same quantity where units are ordered by strata

and then ordered by Ai = 1 first and Ai = 0 second within strata. To this end, define
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N(s) :=
∑n

i=1 1{Si < s} and F (s) := P(Si < s). Furthermore, independently for each s ∈ S
and independently of {S(n), A(n)}, let

{
Xs
i : 1 ≤ i ≤ n

}
be i.i.d with marginal distribution

equal to the distribution of Xi|S = s. Define

µ̃b(a, s,Xs
i ) := µb(a, s,Xs

i )− E
[
µb(a, s,Xs

i )|Si = s
]

Then, we have, for s ∈ S,

1√
n

n∑
i=1

Aiµ̃
Y (1, s,Xi)1{Si = s} d

=
1√
n

N(s)+n1(s)∑
i=N(s)+1

µ̃Y (1, s,Xs
i ).

In addition, we have

E


 1√

n

N(s)+n1(s)∑
i=N(s)+1

µ̃Y (1, s,Xs
i )

2 ∣∣∣∣S(n), A(n)

 =
n1(s)

n
E
[
µ̃Y,2(a, s,Xs

i )|S(n)
]

≤ n1(s)

n
E
[
µY,2(a, s,Xi)|Si = s

]
= Op(1),

which implies

max
s∈S

∣∣∣∣ 1√
n

N(s)+n1(s)∑
i=N(s)+1

µ̃Y (1, s,Xs
i )

∣∣∣∣ = Op(1).

Combining this with the facts that maxs∈S |π̂(s)−π(s)| = op(1) and mins∈S π(s) > c > 0 for

some constant c, we have

∑
s∈S

(
1

π(s)
− 1

π̂(s)

)
1√
n

n∑
i=1

Aiµ̃
Y (1, s,Xi)1{Si = s} = op(1)

1√
n

n∑
i=1

(
1− 1

π̂(Si)

)
Aiµ̃

Y (1, Si, Xi) =
1√
n

n∑
i=1

(
1− 1

π(Si)

)
Aiµ̃

Y (1, Si, Xi) + op(1).

Therefore, we have

Rn,1 =
1√
n

n∑
i=1

(
1− 1

π(Si)

)
Aiµ̃

Y (1, Si, Xi) +
1√
n

n∑
i=1

(1− Ai)µ̃Y (1, Si, Xi) + op(1).
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The linear expansion of Rn,2 can be established in the same manner. For Rn,3, note that

Yi = Yi(1)
[
Di(1)Ai +Di(0)(1− Ai)

]
+ Yi(0)

[
1−Di(1)Ai −Di(0)(1− Ai)

]
=
[
Yi(1)Di(1)− Yi(0)Di(1)

]
Ai +

[
Yi(1)Di(0)− Yi(0)Di(0)

]
(1− Ai) + Yi(0).

Then

AiYi =
[
Yi(1)Di(1) + Yi(0)(1−Di(1))

]
Ai,

(1− Ai)Yi =
[
Yi(1)Di(0) + Yi(0)(1−Di(0))

]
(1− Ai),

1√
n

n∑
i=1

AiYi
π̂(Si)

=
1√
n

n∑
i=1

1

π̂(Si)

[
Yi(1)Di(1) + Yi(0)(1−Di(1))

]
Ai =:

1√
n

n∑
i=1

1

π̂(Si)
WiAi,

1√
n

n∑
i=1

(1− Ai)Yi
1− π̂(Si)

=
1√
n

n∑
i=1

[
Yi(1)Di(0) + Yi(0)(1−Di(0))

]
(1− Ai)

1− π̂(Si)
=:

1√
n

n∑
i=1

Zi(1− Ai)
1− π̂(Si)

.

Thus we have

Rn,3 =
1√
n

n∑
i=1

AiYi
π̂(Si)

− 1√
n

n∑
i=1

(1− Ai)Yi
1− π̂(Si)

−
√
nG

=

 1√
n

n∑
i=1

1

π̂(Si)
W̃iAi −

1√
n

n∑
i=1

1− Ai
1− π̂(Si)

Z̃i


+

 1√
n

n∑
i=1

1

π̂(Si)
E[Wi|Si]Ai −

1√
n

n∑
i=1

1− Ai
1− π̂(Si)

E[Zi|Si]−
√
nG

 . (S.Q.3)

We now consider the second term on the RHS of (S.Q.3). First note that

1√
n

n∑
i=1

1

π̂(Si)
E[Wi|Si]Ai =

1√
n

n∑
i=1

1

π(Si)
E[Wi|Si]Ai −

1√
n

n∑
i=1

π̂(Si)− π(Si)

π̂(Si)π(Si)
E[Wi|Si]Ai,

1√
n

n∑
i=1

1

π(Si)
E[Wi|Si]Ai =

∑
s∈S

1√
n

n∑
i=1

1

π(s)
E[Wi|Si = s]Ai1{Si = s}

=
∑
s∈S

1√
n

n∑
i=1

E[Wi|Si = s]

π(s)
(Ai − π(s))1{Si = s}+

∑
s∈S

1√
n

n∑
i=1

1

π(s)
E[Wi|Si = s]π(s)1{Si = s}
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=
∑
s∈S

E[W |S = s]

π(s)
√
n

n∑
i=1

(Ai − π(s))1{Si = s}+
∑
s∈S

E[W |S = s]√
n

n∑
i=1

1{Si = s}

=
∑
s∈S

E[W |S = s]

π(s)
√
n

Bn(s) +
∑
s∈S

E[W |S = s]√
n

n(s), (S.Q.4)

and

1√
n

n∑
i=1

π̂(Si)− π(Si)

π̂(Si)π(Si)
E[Wi|Si]Ai =

∑
s∈S

1√
n

n∑
i=1

π̂(s)− π(s)

π̂(s)π(s)
E[Wi|Si = s]Ai1{Si = s}

=
∑
s∈S

1√
n

n∑
i=1

Bn(s)

n(s)π̂(s)π(s)
E[Wi|Si = s]Ai1{Si = s}

=
∑
s∈S

Bn(s)E[W |S = s]√
nn(s)π̂(s)π(s)

n∑
i=1

Ai1{Si = s} =
∑
s∈S

Bn(s)E[W |S = s]√
nn(s)π̂(s)π(s)

n1(s)

=
∑
s∈S

Bn(s)E[W |S = s]√
nπ(s)

.

Therefore, we have

1√
n

n∑
i=1

1

π̂(Si)
E[Wi|Si]Ai =

∑
s∈S

E[W |S = s]√
n

n(s).

Similarly, we have

1√
n

n∑
i=1

1− Ai
1− π̂(Si)

E[Zi|Si] =
∑
s∈S

E[Z|S = s]√
n

n(s)

Then, we have

1√
n

n∑
i=1

1

π̂(Si)
E[Wi|Si]Ai −

1√
n

n∑
i=1

1− Ai
1− π̂(Si)

E[Zi|Si]−
√
nG

=
∑
s∈S

E[W |S = s]√
n

n(s)−
∑
s∈S

E[Z|S = s]√
n

n(s)−
√
nG

=
∑
s∈S

√
n

(
n(s)

n
− p(s)

)
E[W − Z|S = s] +

∑
s∈S

√
np(s)E[W − Z|S = s]−

√
nG

=
∑
s∈S

√
n

(
n(s)

n
− p(s)

)
E[W − Z|S = s] +

√
nE[W − Z]−

√
nG
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=
∑
s∈S

n(s)√
n
E[W − Z|S = s]−

√
nE[W − Z]

=
1√
n

∑
s∈S

n∑
i=1

(
1{Si = s}E[Wi − Zi|Si = s]

)
−
√
nE[W − Z]

=
1√
n

n∑
i=1

E[Wi − Zi|Si]−
√
nE[W − Z]

=
1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)
. (S.Q.5)

Combining (S.Q.3) and (S.Q.5), we have

Rn,3 =

 1√
n

n∑
i=1

1

π̂(Si)
W̃iAi −

1√
n

n∑
i=1

1− Ai
1− π̂(Si)

Z̃i

+

 1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)
=

 1√
n

n∑
i=1

1

π(Si)
W̃iAi −

1√
n

n∑
i=1

1− Ai
1− π(Si)

Z̃i


+

 1√
n

n∑
i=1

(
E[Wi − Zi|Si]− E[Wi − Zi]

)+ op(1),

where the second equality holds because(
1

π(s)
− 1

π̂(s)

)
1√
n

n∑
i=1

W̃iAi1{Si = s} = op(1) and(
1

π(s)
− 1

π̂(s)

)
1√
n

n∑
i=1

Z̃i(1− Ai)1{Si = s} = op(1)

due to the same argument used in the proofs of Rn,1.

Lemma S.Q.2. Under the assumptions in Theorem 3.1, we have

1√
n

n∑
i=1

Ξ1(Di, Si)Ai  N
(
0,Eπ(Si)Ξ

2
1(Di, Si)

)
,

1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai) N
(
0,E(1− π(Si))Ξ

2
0(Di, Si)

)
, and

1√
n

n∑
i=1

Ξ2(Si) N (0,EΞ2
2(Si)),
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and the three terms are asymptotically independent.

Proof. Note that under Assumption 1(i), conditional on {S(n), A(n)}, the distribution of 1√
n

n∑
i=1

Ξ1(Di, Si)Ai,
1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai)


is the same as the distribution of the same quantity where units are ordered by strata

and then ordered by Ai = 1 first and Ai = 0 second within strata. To this end, define

N(s) :=
∑n

i=1 1{Si < s} and F (s) := P(Si < s). Furthermore, independently for each s ∈ S
and independently of {S(n), A(n)}, let

{
Dsi : 1 ≤ i ≤ n

}
be i.i.d with marginal distribution

equal to the distribution of D|S = s. Then, we have 1√
n

n∑
i=1

Ξ1(Di, Si)Ai,
1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai)

∣∣∣∣S(n), A(n)

d
=

 1√
n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Ξ1(Dsi , s),
1√
n

∑
s∈S

N(s)+n(s)∑
N(s)+n1(s)+1

Ξ0(Dsi , s)

∣∣∣∣S(n), A(n).

In addition, since Ξ2(Si) is a function of {S(n), A(n)}, we have, arguing along the line of a

joint distribution being the product of a conditional distribution and a marginal distribution, 1√
n

n∑
i=1

Ξ1(Di, Si)Ai,
1√
n

n∑
i=1

Ξ0(Di, Si)(1− Ai),
1√
n

n∑
i=1

Ξ2(Si)


d
=

 1√
n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Ξ1(Dsi , s),
1√
n

∑
s∈S

N(s)+n(s)∑
N(s)+n1(s)+1

Ξ0(Dsi , s),
1√
n

n∑
i=1

Ξ2(Si)

 .

Define Γa,n(u, s) = 1√
n

∑bunc
i=1 Ξa(Dsi , s) for a = 0, 1, s ∈ S. We have

1√
n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Ξ1(Dsi , s) =
∑
s∈S

[
Γ1,n

(
N(s) + n1(s)

n
, s

)
− Γ1,n

(
N(s)

n
, s

)]
,

1√
n

∑
s∈S

N(s)+n(s)∑
N(s)+n1(s)+1

Ξ0(Dsi , s) =
∑
s∈S

[
Γ0,n

(
N(s) + n(s)

n
, s

)
− Γ0,n

(
N(s) + n1(s)

n
, s

)]
.
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In addition, the partial sum process (w.r.t. u ∈ [0, 1]) is stochastic equicontinuous and(
N(s)

n
,
n1(s)

n

)
p−→
(
F (s), π(s)p(s)

)
.

Therefore, 1√
n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Ξ1(Dsi , s),
1√
n

∑
s∈S

N(s)+n(s)∑
N(s)+n1(s)+1

Ξ0(Dsi , s),
1√
n

n∑
i=1

Ξ2(Si)



=


∑

s∈S

[
Γ1,n

(
F (s) + p(s)π(s), s

)
− Γ1,n

(
F (s), s

)]
,∑

s∈S

[
Γ0,n

(
F (s) + p(s), s

)
− Γ0,n

(
F (s) + π(s)p(s), s

)]
,

1√
n

∑n
i=1 Ξ2(Si)

+ op(1)

and by construction,∑
s∈S

[
Γ1,n

(
F (s) + p(s)π(s), s

)
− Γ1,n

(
F (s), s

)]
,∑

s∈S

[
Γ0,n

(
F (s) + p(s), s

)
− Γ0,n

(
F (s) + p(s)π(s), s

)]
,

and
1√
n

n∑
i=1

Ξ2(Si)

are independent. Last, we have∑
s∈S

[
Γ1,n

(
F (s) + p(s)π(s), s

)
− Γ1,n

(
F (s), s

)]
 N

(
0,Eπ(Si)Ξ

2
1(Di, Si)

)
∑
s∈S

[
Γ0,n

(
F (s) + p(s), s

)
− Γ0,n

(
F (s) + p(s)π(s), s

)]
 N

(
0,E(1− π(Si))Ξ

2
0(Di, Si)

)
1√
n

n∑
i=1

Ξ2(Si) N
(
0,EΞ2

2(Si)
)
.

This implies the desired result.

Lemma S.Q.3. Suppose assumptions in Theorem 3.1 hold. Then,

1

n

n∑
i=1

AiΞ̂
2
1(Di, Si)

p−→ σ2
1,

1

n

n∑
i=1

(1− Ai)Ξ̂2
0(Di, Si)

p−→ σ2
0, and

1

n

n∑
i=1

Ξ̂2
2(Di, Si)

p−→ σ2
2.
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Proof. To derive the limit of 1
n

∑n
i=1AiΞ̂

2
1(Di, Si), we first define

Ξ̃∗1(Di, s) =

[(
1− 1

π(s)

)
µY (1, s,Xi)− µY (0, s,Xi) +

Yi
π(s)

]

− τ

[(
1− 1

π(s)

)
µD(1, s,Xi)− µD(0, s,Xi) +

Di

π(s)

]
and

Ξ̆1(Di, s) =

[(
1− 1

π̂(s)

)
µY (1, s,Xi)− µY (0, s,Xi) +

Yi
π̂(s)

]

− τ̂

[(
1− 1

π̂(s)

)
µD(1, s,Xi)− µD(0, s,Xi) +

Di

π̂(s)

]

Then, we have 1

n1(s)

∑
i∈I1(s)

(Ξ̃∗1(Di, s)− Ξ̃1(Di, s))2

1/2

≤

 1

n1(s)

∑
i∈I1(s)

(Ξ̃∗1(Di, s)− Ξ̆1(Di, s))2

1/2

+

 1

n1(s)

∑
i∈I1(s)

(Ξ̃1(Di, s)− Ξ̆1(Di, s))2

1/2

≤ |π̂(s)− π(s)|
π̂(s)π(s)

{[
1

n1(s)

∑
i∈I1(s)

µY,2(1, s,Xi)

]1/2

+

[
1

n1(s)

∑
i∈I1(s)

W 2
i

]1/2}

+

(
|τ̂ − τ |+ |τ π̂(s)− τ̂π(s)|

π̂(s)π(s)

){[
1

n1(s)

∑
i∈I1(s)

µD,2(1, s,Xi)

]1/2

+

[
1

n1(s)

∑
i∈I1(s)

D2
i (1)

]1/2}

+ |τ̂ − τ |
[

1

n1(s)

∑
i∈I1(s)

µD,2(0, s,Xi)

]1/2

+

(
1

π̂(s)
− 1

){[
1

n1(s)

∑
i∈I1(s)

∆Y,2(1, s,Xi)

]1/2

+ |τ̂ |
[

1

n1(s)

∑
i∈I1(s)

∆D,2(1, s,Xi)

]1/2}

+

[
1

n1(s)

∑
i∈I1(s)

∆Y,2(0, s,Xi)

]1/2

+ |τ̂ |
[

1

n1(s)

∑
i∈I1(s)

∆D,2(0, s,Xi)

]1/2

= op(1),

where the second inequality holds by the triangle inequality and the fact that when i ∈ I1(s),

Ai = 1, Yi = Wi, and Di = Di(1), and the last equality is due to Assumption 3(ii) and the
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facts that π̂(s)
p−→ π(s) and τ̂

p−→ τ . This further implies

1

n1(s)

∑
i∈I1(s)

(Ξ̃∗1(Di, s)− Ξ̃1(Di, s))
p−→ 0,

by the Cauchy-Schwarz inequality and thus,

 1

n1(s)

∑
i∈I1(s)

Ξ̂2
1(Di, s)

1/2

≤

 1

n1(s)

∑
i∈I1(s)

Ξ̃∗1(Di, s)−
1

n1

∑
i∈I1(s)

Ξ̃∗1(Di, s)

2


1/2

+ op(1).

Next, following the same argument in the proof of Lemma S.Q.2, we have

1

n1(s)

∑
i∈I1(s)

Ξ̃∗1(Di, s)
d
=

1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

{[(
1− 1

π(s)

)
µY (1, s,Xs

i )− µY (0, s,Xs
i ) +

W s
i

π(s)

]

− τ

[(
1− 1

π(s)

)
µD(1, s,Xs

i )− µD(0, s,Xs
i ) +

Ds
i (1)

π(s)

]}
p−→ E

{[(
1− 1

π(Si)

)
µY (1, Si, Xi)− µY (0, Si, Xi) +

Wi

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µD(1, Si, Xi)− µD(0, Si, Xi) +

Di(1)

π(Si)

]
|Si = s

}
,

This implies 1

n1(s)

∑
i∈I1(s)

Ξ̃∗1(Di, s)−
1

n1

∑
i∈I1(s)

Ξ̃∗1(Di, s)

2


1/2

=

[
1

n1(s)

∑
i∈I1(s)

(
Ξ̃∗1(Di, s)− E

{[(
1− 1

π(Si)

)
µY (1, Si, Xi)− µY (0, Si, Xi) +

Wi

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µD(1, Si, Xi)− µD(0, Si, Xi) +

Di(1)

π(Si)

]
|Si = s

})2]1/2

+ op(1)

=

[
1

n1(s)

∑
i∈I1(s)

([(
1− 1

π(Si)

)
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi) +

W̃i

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi) +

D̃i(1)

π(Si)

])2]1/2

+ op(1).
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Last, following the same argument in the proof of Lemma S.Q.2, we have[
1

n1(s)

∑
i∈I1(s)

([(
1− 1

π(Si)

)
µ̃Y (1, Si, Xi)− µ̃Y (0, Si, Xi) +

W̃i

π(Si)

]

− τ

[(
1− 1

π(Si)

)
µ̃D(1, Si, Xi)− µ̃D(0, Si, Xi) +

D̃i(1)

π(Si)

])2]1/2

d
=

[
1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

([(
1− 1

π(s)

)
µ̃Y (1, s,Xs

i )− µ̃Y (0, s,Xs
i ) +

W̃ s
i

π(s)

]

− τ

[(
1− 1

π(s)

)
µ̃D(1, s,Xs

i )− µ̃D(0, s,Xs
i ) +

D̃s
i (1)

π(s)

])2]1/2

p−→
[
E(Ξ2

1(Di, Si)|Si = s)
]1/2

,

where W̃ s
i = W s

i − E(Wi|Si = s) and D̃s
i (1) = Ds

i (1) − E(Di(1)|Si = s) and the last

convergence is due to the fact that conditionally on S(n), A(n), {Xs
i , W̃

s
i , D̃

s
i (1)}i∈I1(s) is a

sequence of i.i.d. random variables so that the standard LLN is applicable. Combining all

the results above, we have shown that

1

n1(s)

∑
i∈I1(s)

Ξ̂2
1(Di, Si)

p−→ E(Ξ2
1(Di, Si)|Si = s)

1

n

n∑
i=1

AiΞ̂
2
1(Di, Si) =

∑
s∈S

n1(s)

n

(
1

n1(s)

∑
i∈I1(s)

Ξ̂2
1(Di, Si)

)
p−→
∑
s∈S

p(s)π(s)E(Ξ2
1(Di, Si)|Si = s) = E

[
π(Si)E(Ξ2

1(Di, Si)|Si)
]

= σ2
1.

For the same reason, we can show that

1

n

n∑
i=1

(1− Ai)Ξ̂2
0(Di, Si)

p−→ σ2
0.

Last, by the similar argument, we have

1

n

n∑
i=1

Ξ̂2
2(Si) =

∑
s∈S

n(s)

n
Ξ̂2

2(s)

=
∑
s∈S

n(s)

n
(E(Wi − τDi(1)|Si = s)− E(Zi − τDi(0)|Si = s))2 + op(1)
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=
∑
s∈S

n(s)

n
Ξ2

2(s) + op(1)

p−→
∑
s∈S

p(s)Ξ2
2(s) = EΞ2

2(Si) = σ2
2.

S.R An Additional Simulation

In this section, we use an additional simulation to demonstrate that when probabilities of

treatment assignment {π(s)} are heterogeneous across strata, the TSLS estimator could be

inconsistent. The data generating process we consider here, denoted DGP(iv), is almost the

same as DGP(i) in Section 6; the only difference is in Yi(a):

Yi(1) =2 + S2
i + 0.7X2

1,i +X2,i + 4Zi + ε1,i

Yi(0) =1 + 0.7X2
1,i +X2,i + 4Zi + ε2,i.

The rationale for specifying this DGP is to allow a difference between the probabilistic limit of

τ̂TSLS and τ . We consider randomization schemes SRS and SBR with (π(1), π(2), π(3), π(4)) =

(0.2, 0.2, 0.2, 0.5). We do not consider randomization scheme WEI or BCD because for these

two, π(s) = 0.5 for all s ∈ S. The rest of the simulation setting is the same as DGP(i)

in Section 6. Table 1 presents the empirical sizes. We see that all estimators, except the

TSLS estimator, have the empirical sizes converging to 0.05 as sample size increases. The

size distortion of TSLS becomes larger as sample size increases due to its inconsistency in

this setting.
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